Shortcut-to-Adiabaticity-Like Techniques for Parameter Estimation in Quantum Metrology
Abstract
1. Introduction
2. Optimal Adaptive Control for Quantum Metrology with Time-Dependent Hamiltonians
Quantum Fisher Information
3. Estimation of Field Amplitude and Rotation Frequency
Estimation of the Rotation Frequency with Hamiltonian Control
4. Alternative Driving via Physical Unitary Transformations
5. Discussion
Author Contributions
Funding
Conflicts of Interest
Appendix A. Physical vs. Formal Transformations
References
- Pang, S.; Jordan, A.N. Optimal adaptive control for quantum metrology with time-dependent Hamiltonians. Nat. Commun. 2017, 8. [Google Scholar] [CrossRef] [PubMed]
- Naghiloo, M.; Jordan, A.N.; Murch, K.W. Achieving Optimal Quantum Acceleration of Frequency Estimation Using Adaptive Coherent Control. Phys. Rev. Lett. 2017, 119, 180801. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Pang, S.; Jordan, A.N. Quantum parameter estimation with the Landau-Zener transition. Phys. Rev. A 2017, 96, 020301. [Google Scholar] [CrossRef]
- Gefen, T.; Jelezko, F.; Retzker, A. Control methods for improved Fisher information with quantum sensing. Phys. Rev. A 2017, 96, 032310. [Google Scholar] [CrossRef]
- Mukherjee, V.; Zwick, A.; Ghosh, A.; Chen, X.; Kurizki, G. Enhanced precision bound of low-temperature quantum thermometry via dynamical control. Commun. Phys. 2019, 2. [Google Scholar] [CrossRef]
- Braunstein, S.L.; Caves, C.M. Statistical distance and the geometry of quantum states. Phys. Rev. Lett. 1994, 72, 3439–3443. [Google Scholar] [CrossRef]
- Braunstein, S.L.; Caves, C.M.; Milburn, G. Generalized Uncertainty Relations: Theory, Examples, and Lorentz Invariance. Ann. Phys. 1996, 247, 135–173. [Google Scholar] [CrossRef]
- Guèry-Odelin, D.; Ruschhaupt, A.; Kiely, A.; Torrontegui, E.; Martínez-Garaot, S.; Muga, J. Shortcuts to adiabaticity: Concepts, methods, and applications. Rev. Mod. Phys. 2019, 91. [Google Scholar] [CrossRef]
- Unanyan, R.G.; Yatsenko, L.P.; Bergmann, K.; Shore, B.W. Laser-induced adiabatic atomic reorientation with control of diabatic losses. Opt. Commun. 1997, 139, 48–54. [Google Scholar] [CrossRef]
- Demirplak, M.; Rice, S.A. Adiabatic population transfer with control fields. J. Phys. Chem. A 2003, 107, 9937–9945. [Google Scholar] [CrossRef]
- Demirplak, M.; Rice, S.A. Assisted adiabatic passage revisited. J. Phys. Chem. B 2005, 109, 6838–6844. [Google Scholar] [CrossRef] [PubMed]
- Demirplak, M.; Rice, S.A. On the consistency, extremal, and global properties of counterdiabatic fields. J. Chem. Phys. 2008, 129, 154111. [Google Scholar] [CrossRef] [PubMed]
- Berry, M.V. Transitionless quantum driving. J. Phys. A Math. Theor. 2009, 42, 365303. [Google Scholar] [CrossRef]
- Chen, X.; Lizuain, I.; Ruschhaupt, A.; Guéry-Odelin, D.; Muga, J.G. Shortcut to Adiabatic Passage in Two- and Three-Level Atoms. Phys. Rev. Lett. 2010, 105, 123003. [Google Scholar] [CrossRef]
- Muga, J.G.; Chen, X.; Ibáñez, S.; Lizuain, I.; Ruschhaupt, A. Transitionless quantum drivings for the harmonic oscillator. J. Phys. B At. Mol. Opt. Phys. 2010, 43, 085509. [Google Scholar] [CrossRef]
- Torrontegui, E.; Ibáñez, S.; Martínez-Garaot, S.; Modugno, M.; del Campo, A.; Guéry-Odelin, D.; Ruschhaupt, A.; Chen, X.; Muga, J.G. Shortcuts to Adiabaticity. In Advances In Atomic, Molecular, and Optical Physics; Elsevier: Amsterdam, The Netherlands, 2013; pp. 117–169. [Google Scholar] [CrossRef]
- Bason, M.G.; Viteau, M.; Malossi, N.; Huillery, P.; Arimondo, E.; Ciampini, D.; Fazio, R.; Giovannetti, V.; Mannella, R.; Morsch, O. High-fidelity quantum driving. Nat. Phys. 2011, 8, 147–152. [Google Scholar] [CrossRef]
- Ibáñez, S.; Chen, X.; Torrontegui, E.; Muga, J.G.; Ruschhaupt, A. Multiple Schrödinger Pictures and Dynamics in Shortcuts to Adiabaticity. Phys. Rev. Lett. 2012, 109, 100403. [Google Scholar] [CrossRef]
- Martínez-Garaot, S.; Torrontegui, E.; Chen, X.; Muga, J.G. Shortcuts to adiabaticity in three-level systems using Lie transforms. Phys. Rev. A 2014, 89, 053408. [Google Scholar] [CrossRef]
- Berry, M.V. Quantum phase corrections from adiabatic iteration. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 1987, 414, 31–46. [Google Scholar] [CrossRef]
- Ibáñez, S.; Chen, X.; Muga, J.G. Improving shortcuts to adiabaticity by iterative interaction pictures. Phys. Rev. A 2013, 87, 043402. [Google Scholar] [CrossRef]
- Garrido, L. Generalized adiabatic invariance. J. Math. Phys. 1964, 5, 355–362. [Google Scholar] [CrossRef]
- Sels, D.; Polkovnikov, A. Minimizing irreversible losses in quantum systems by local counterdiabatic driving. Proc. Natl. Acad. Sci. USA 2017, 114, E3909–E3916. [Google Scholar] [CrossRef] [PubMed]
- Claeys, P.W.; Pandey, M.; Sels, D.; Polkovnikov, A. Floquet-Engineering Counterdiabatic Protocols in Quantum Many-Body Systems. Phys. Rev. Lett. 2019, 123, 090602. [Google Scholar] [CrossRef]
- Petiziol, F.; Dive, B.; Mintert, F.; Wimberger, S. Fast adiabatic evolution by oscillating initial Hamiltonians. Phys. Rev. A 2018, 98, 043436. [Google Scholar] [CrossRef]
- Petiziol, F.; Dive, B.; Carretta, S.; Mannella, R.; Mintert, F.; Wimberger, S. Accelerating adiabatic protocols for entangling two qubits in circuit QED. arXiv 2019, arXiv:1901.07344. [Google Scholar] [CrossRef]
- Fiderer, L.J.; Fraïsse, J.M.E.; Braun, D. Maximal Quantum Fisher Information for Mixed States. Phys. Rev. Lett. 2019, 123, 250502. [Google Scholar] [CrossRef]
- Campbell, S.; Genoni, M.G.; Deffner, S. Precision thermometry and the quantum speed limit. Quantum Sci. Technol. 2018, 3, 025002. [Google Scholar] [CrossRef]
STA | Metrology | |
---|---|---|
Eigenstates of a reference Hamiltonian | Eigenstates of | |
Reference Hamiltonian | diagonal in the basis | not diagonal in the basis |
Drives along adiabatic states of | Drives along eigenstates of (so “CD” is here an abuse of language) | |
The addition of only changes phases | Adding would produce transitions so it is added AND subtracted, see (18) | |
Speed | Emphasis on Fast driving | Not necessarily fast |
Iterations | “Superadiabatic”, structural changes | Adaptive, only the parameter changes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cabedo-Olaya, M.; Muga, J.G.; Martínez-Garaot, S. Shortcut-to-Adiabaticity-Like Techniques for Parameter Estimation in Quantum Metrology. Entropy 2020, 22, 1251. https://doi.org/10.3390/e22111251
Cabedo-Olaya M, Muga JG, Martínez-Garaot S. Shortcut-to-Adiabaticity-Like Techniques for Parameter Estimation in Quantum Metrology. Entropy. 2020; 22(11):1251. https://doi.org/10.3390/e22111251
Chicago/Turabian StyleCabedo-Olaya, Marina, Juan Gonzalo Muga, and Sofía Martínez-Garaot. 2020. "Shortcut-to-Adiabaticity-Like Techniques for Parameter Estimation in Quantum Metrology" Entropy 22, no. 11: 1251. https://doi.org/10.3390/e22111251
APA StyleCabedo-Olaya, M., Muga, J. G., & Martínez-Garaot, S. (2020). Shortcut-to-Adiabaticity-Like Techniques for Parameter Estimation in Quantum Metrology. Entropy, 22(11), 1251. https://doi.org/10.3390/e22111251