Digital Quantum Simulation of Nonadiabatic Geometric Gates via Shortcuts to Adiabaticity
Abstract
1. Introduction
2. Model, Hamiltonian, and Method
3. STA Design and Digital Simulation
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Digital Simulation by Suzuki-Trotter Expansion
References
- Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information; Cambridge University Press: Cambridge, UK, 2000; pp. 204–213. [Google Scholar]
- Berry, M.V. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. Ser. A 1984, 392, 45. [Google Scholar] [CrossRef]
- Wilczek, F.; Zee, A. Appearance of gauge structure in simple dynamical systems. Phys. Rev. Lett. 1984, 52, 2111. [Google Scholar] [CrossRef]
- Aharonov, Y.; Anandan, J. Phase change during a cyclic quantum evolution. Phys. Rev. Lett. 1987, 58, 1953. [Google Scholar] [CrossRef]
- Zanardi, P.; Rasetti, M. Holonomic quantum computation. Phys. Lett. A 1999, 264, 94. [Google Scholar] [CrossRef]
- Sjöqvist, E. Trend: A new phase in quantum computation. Physics 2008, 1, 35. [Google Scholar] [CrossRef]
- Zhu, S.-L.; Zanardi, P. Geometric quantum gates that are robust against stochastic control errors. Phys. Rev. A 2005, 72, 020301(R). [Google Scholar] [CrossRef]
- Leek, P.J.; Fink, J.M.; Blais, A.; Bianchetti, R.; Göppl, M.; Gambetta, J.M.; Schuster, D.I.; Frunzio, L.; Schoelkopf, R.J.; Wallraff, A. Observation of Berry’s phase in a solid-state qubit. Science 2007, 318, 1889. [Google Scholar] [CrossRef]
- Filipp, S.; Klepp, J.; Hasegawa, Y.; Plonka-Spehr, C.; Schmidt, U.; Geltenbort, P.; Rauch, H. Experimental Demonstration of the Stability of Berry’s Phase for a Spin- Particle. Phys. Rev. Lett. 2009, 102, 030404. [Google Scholar] [CrossRef]
- Solinas, P.; Sassetti, M.; Truini, T.; Zanghí, N. On the stability of quantum holonomic gates. New J. Phys. 2012, 14, 093006. [Google Scholar] [CrossRef]
- Kelly, J.; Barends, R.; Fowler, A.G.; Megrant, A.; Jeffrey, E.; White, T.C.; Sank, D.; Mutus, J.Y.; Campbell, B.; Chen, Y.; et al. State preservation by repetitive error detection in a superconducting quantum circuit. Nature 2015, 519, 66. [Google Scholar] [CrossRef]
- Takita, M.; Cross, A.W.; Córcoles, A.D.; Chow, J.M.; Gambetta, J.M. Experimental demonstration of fault-tolerant state preparation with superconducting qubits. Phys. Rev. Lett. 2017, 119, 180501. [Google Scholar] [CrossRef]
- Rosenblum, S.; Reinhold, P.; Mirrahimi, M.; Jiang, L.; Frunzio, L.; Schoelkopf, R.J. Fault-tolerant detection of a quantum error. Science 2018, 361, 266. [Google Scholar] [CrossRef] [PubMed]
- Falci, G.; Fazio, R.; Palma, G.M.; Siewert, J.; Vedral, V. Detection of geometric phases in superconducting nanocircuits. Nature 2000, 407, 355–358. [Google Scholar] [CrossRef] [PubMed]
- Leibfried, D.; DeMarco, B.; Meyer, V.; Lucas, D.; Barrett, M.; Britton, J.; Itano, W.M.; Jelenković, B.; Langer, C.; Rosenband, T.; et al. Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate. Nature 2003, 422, 412. [Google Scholar] [CrossRef]
- Cui, J.-M.; Ai, M.-Z.; He, R.; Qian, Z.-H.; Qin, X.-K.; Huang, Y.-F.; Zhou, Z.-W.; Li, C.-F.; Tu, T.; Guo, G.-C. Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate. Sci. Bull. 2019, 64, 1757. [Google Scholar] [CrossRef]
- Zhao, P.-Z.; Dong, Z.; Zhang, Z.; Guo, G.; Tong, D.-M.; Yin, Y. Experimental realization of nonadiabatic geometric gates with a superconducting Xmon qubit. arXiv 2019, arXiv:1909.09970. [Google Scholar]
- Chu, J.; Li, D.; Yang, X.; Song, S.; Han, Z.; Yang, Z.; Dong, Y.; Zheng, W.; Wang, Z.; Yu, X.; et al. Realization of Superadiabatic Two-Qubit Gates Using Parametric Modulation in Superconducting Circuits. Phys. Rev. Appl. 2020, 13, 064012. [Google Scholar] [CrossRef]
- Xu, Y.; Hua, Z.; Chen, T.; Pan, X.; Li, X.; Han, J.; Cai, W.; Ma, Y.; Wang, H.; Song, Y.-P.; et al. Experimental implementation of universal nonadiabatic geometric quantum gates in a superconducting circuit. Phys. Rev. Lett. 2020, 124, 230503. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.-B.; Keiji, M. Nonadiabatic conditional geometric phase shift with NMR. Phys. Rev. Lett. 2001, 87, 097901. [Google Scholar] [CrossRef]
- Zhu, S.-L.; Wang, Z.-D. Implementation of universal quantum gates based on nonadiabatic geometric phases. Phys. Rev. Lett. 2002, 89, 097902. [Google Scholar] [CrossRef]
- Chen, T.; Xue, Z.-Y. Nonadiabatic geometric quantum computation with parametrically tunable coupling. Phys. Rev. Appl. 2018, 10, 054051. [Google Scholar] [CrossRef]
- Chen, X.-Y.; Li, T.; Yin, Z.-Q. Nonadiabatic dynamics and geometric phase of an ultrafast rotating electron spin. Sci. Bull. 2019, 64, 380. [Google Scholar] [CrossRef]
- Sjöqvist, E.; Tong, D.M.; Andersson, L.M.; Hessmo, B.; Johansson, M.; Singh, K. Non-adiabatic holonomic quantum computation. New J. Phys. 2012, 14, 103035. [Google Scholar] [CrossRef]
- Xu, G.-F.; Zhang, J.; Tong, D.M.; Sjöqvist, E.; Kwek, L.-C. Nonadiabatic holonomic quantum computation in decoherence-free subspaces. Phys. Rev. Lett. 2012, 109, 170501. [Google Scholar] [CrossRef]
- Zheng, S.-B.; Yang, C.-P.; Nori, F. Comparison of the sensitivity to systematic errors between nonadiabatic non-Abelian geometric gates and their dynamical counterparts. Phys. Rev. A 2016, 93, 032313. [Google Scholar] [CrossRef]
- Jing, J.; Lam, C.H.; Wu, L.A. Non-Abelian holonomic transformation in the presence of classical noise. Phys. Rev. A 2017, 95, 012334. [Google Scholar] [CrossRef]
- Santos, A.C. Quantum gates by inverse engineering of a Hamiltonian. J. Phys. B At. Mol. Opt. Phys. 2018, 51, 015501. [Google Scholar] [CrossRef]
- Liu, B.-J.; Song, X.-K.; Xue, Z.-Y.; Wang, X.; Yung, M.-H. Plug-and-Play Approach to Nonadiabatic Geometric Quantum Gates. Phys. Rev. Lett. 2019, 123, 100501. [Google Scholar] [CrossRef]
- Li, S.; Chen, T.; Xue, Z.-Y. Fast holonomic quantum computation on superconducting circuits with optimal control. Adv. Quantum Technol. 2020, 3, 2000001. [Google Scholar] [CrossRef]
- Xu, J.; Li, S.; Chen, T.; Xue, Z.-Y. Nonadiabatic geometric quantum computation with optimal control on superconducting circuits. Front. Phys. 2020, 15, 41503. [Google Scholar] [CrossRef]
- Yan, T.; Liu, B.-J.; Xu, K.; Song, C.; Liu, S.; Zhang, Z.; Deng, H.; Yan, Z.; Rong, H.; Huang, K.; et al. Experimental realization of nonadiabatic shortcut to non-Abelian geometric gates. Phys. Rev. Lett. 2019, 122, 080501. [Google Scholar] [CrossRef] [PubMed]
- Ai, M.-Z.; Li, S.; Hou, Z.; He, R.; Qian, Z.-H.; Xue, Z.-Y.; Cui, J.-M.; Huang, Y.-F.; Li, C.-F.; Guo, G.-C. Experimental Realization of Nonadiabatic Holonomic Single-qubit Quantum Gates with Optimal Control in a Trapped Ion. arXiv 2020, arXiv:2006.04609. [Google Scholar]
- Torrontegui, E.; Ibánez, S.; Martínez-Garaot, S.; Modugno, M.; del Campo, A.; Guéry-Odelin, D.; Ruschhaupt, A.; Chen, X.; Muga, J.G. Shortcuts to adiabaticity. Adv. Atom. Mol. Opt. Phys. 2013, 62, 117–169. [Google Scholar] [CrossRef]
- Guéry-Odelin, D.; Ruschhaupt, A.; Kiely, A.; Torrontegui, E.; Martínez-Garaot, S.; Muga, J.G. Shortcuts to adiabaticity: Concepts, methods, and applications. Rev. Mod. Phys. 2019, 91, 045001. [Google Scholar] [CrossRef]
- Berry, M.V. Transitionless quantum driving. J. Phys. A Math. Theor. 2009, 42, 365303. [Google Scholar] [CrossRef]
- Chen, X.; Lizuain, I.; Ruschhaupt, A.; Guéry-Odelin, D.; Muga, J.G. Shortcut to adiabatic passage in two-and three-level atoms. Phys. Rev. Lett. 2010, 105, 123003. [Google Scholar] [CrossRef]
- Chen, X.; Ruschhaupt, A.; Schmidt, S.; del Campo, A.; GuéryOdelin, D.; Muga, J.G. Fast Optimal Frictionless Atom Cooling in Harmonic Traps: Shortcut to Adiabaticity. Phys. Rev. Lett. 2010, 104, 063002. [Google Scholar] [CrossRef]
- Lewis, H.R.; Riesenfeld, W.B. An exact quantum theory of the time-dependent harmonic oscillator and of a charged particle in a time-dependent electromagnetic field. J. Math. Phys. 1969, 10, 1458. [Google Scholar] [CrossRef]
- Ruschhaupt, A.; Chen, X.; Alonso, D.; Muga, J.G. Optimally robust shortcuts to population inversion in two-level quantum systems. New J. Phys. 2012, 14, 093040. [Google Scholar] [CrossRef]
- Lu, X.-J.; Chen, X.; Ruschhaupt, A.; Alonso, D.; Guérin, S.; Muga, J.G. Fast and robust population transfer in two-level quantum systems with dephasing noise and/or systematic frequency errors. Phys. Rev. A 2013, 88, 033406. [Google Scholar] [CrossRef]
- Munuera-Javaloy, C.; Ban, Y.; Chen, X.; Casanova, J. Robust Detection of High-Frequency Signals at the Nanoscale. arXiv 2020, arXiv:2007.15394. [Google Scholar]
- Zahedinejad, E.; Ghosh, J.; Sanders, B.C. Designing High-Fidelity Single-Shot Three-Qubit Gates: A Machine-Learning Approach. Phys. Rev. Appl. 2016, 6, 054005. [Google Scholar] [CrossRef]
- Ding, Y.; Ban, Y.; Martín-Guerrero, J.D.; Solano, E.; Casanova, J.; Chen, X. Breaking Adiabatic Quantum Control with Deep Learning. arXiv 2020, arXiv:2009.04297. [Google Scholar]
- Chen, X.; Torrontegui, E.; Muga, J.G. Lewis-Riesenfeld invariants and transitionless quantum driving. Phys. Rev. A 2011, 83, 062116. [Google Scholar] [CrossRef]
- Daems, D.; Ruschhaupt, A.; Sugny, D.; Guérin, S. Robust quantum control by a single-shot shaped pulse. Phys. Rev. Lett. 2013, 111, 050404. [Google Scholar] [CrossRef]
- Hegade, N.N.; Paul, K.; Ding, Y.; Sanz, M.; Albarrán-Arriagada, F.; Solano, E.; Chen, X. Shortcuts to Adiabaticity in Digitized Adiabatic Quantum Computing. arXiv 2020, arXiv:2009.03539. [Google Scholar]
- Suzuki, M. Generalized Trotter’s formula and systematic approximants of exponential operators and inner derivations with applications to many-body problems. Commun. Math. Phys. 1976, 51, 183. [Google Scholar] [CrossRef]
- IBM Quantum Experience. Available online: https://www.research.ibm.com/ibm-q/ (accessed on 20 September 2020).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Ding, Y.; Wang, J.; Chen, X. Digital Quantum Simulation of Nonadiabatic Geometric Gates via Shortcuts to Adiabaticity. Entropy 2020, 22, 1175. https://doi.org/10.3390/e22101175
Wang Y, Ding Y, Wang J, Chen X. Digital Quantum Simulation of Nonadiabatic Geometric Gates via Shortcuts to Adiabaticity. Entropy. 2020; 22(10):1175. https://doi.org/10.3390/e22101175
Chicago/Turabian StyleWang, Yapeng, Yongcheng Ding, Jianan Wang, and Xi Chen. 2020. "Digital Quantum Simulation of Nonadiabatic Geometric Gates via Shortcuts to Adiabaticity" Entropy 22, no. 10: 1175. https://doi.org/10.3390/e22101175
APA StyleWang, Y., Ding, Y., Wang, J., & Chen, X. (2020). Digital Quantum Simulation of Nonadiabatic Geometric Gates via Shortcuts to Adiabaticity. Entropy, 22(10), 1175. https://doi.org/10.3390/e22101175