# Continuous Variables Graph States Shaped as Complex Networks: Optimization and Manipulation

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Results

#### 2.1. Background: Cluster States and Complex Networks

#### 2.2. Improving the Overall Quality of a Complex Cluster

#### 2.3. Concentrating the Squeezing

#### 2.4. Creating a Quantum Channel between Nodes by Manipulating Existing Networks

## 3. Discussion

## 4. Materials and Methods

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## Appendix A

**Figure A1.**Graphs whose results for the creation of an EPR channel between Alice (green) and Bob (blue) are shown in this Appendix. (

**a**) 6-mode grid cluster; (

**b**) 6-mode fully connected cluster.

## References

- Albert, R.; Barabási, A.L. Statistical mechanics of complex networks. Rev. Mod. Phys.
**2002**, 74, 47. [Google Scholar] [CrossRef] [Green Version] - Liu, Y.; Barabási, A.L. Control principles of complex systems. Rev. Mod. Phys.
**2016**, 88, 035006. [Google Scholar] [CrossRef] [Green Version] - Albert, R.; Jeong, H.; Barabási, A.L. Error and attack tolerance of complex networks. Nature
**2000**, 406, 378. [Google Scholar] [CrossRef] [Green Version] - Gao, J.; Barzel, B.; Barabási, A.L. Universal resilience patterns in complex networks. Nature
**2016**, 530, 307. [Google Scholar] [CrossRef] [PubMed] - Bianconi, G. Interdisciplinary and physics challenges of network theory. Europhys. Lett.
**2015**, 111, 56001. [Google Scholar] [CrossRef] [Green Version] - Biamonte, J.; Faccin, M.; De Domenico, M. Complex networks from classical to quantum. Commun. Phys.
**2019**, 2, 53. [Google Scholar] [CrossRef] [Green Version] - Acin, A.; Cirac, J.I.; Lewenstein, M. Entanglement percolation in quantum networks. Nat. Phys.
**2007**, 3, 256. [Google Scholar] [CrossRef] [Green Version] - Faccin, M.; Migdał, P.; Johnson, T.H.; Bergholm, V.; Biamonte, J.D. Community detection in quantum complex networks. Phys. Rev. X
**2014**, 4, 041012. [Google Scholar] [CrossRef] [Green Version] - Paparo, G.D.; Muller, M.; Comellas, F.; Martin-Delgado, M.A. Quantum google in a complex network. Sci. Rep.
**2013**, 3, 2773. [Google Scholar] [CrossRef] [Green Version] - Cabot, A.; Galve, F.; Eguíluz, V.M.; Klemm, K.; Maniscalco, S.; Zambrini, R. Unveiling noiseless clusters in complex quantum networks. NPJ Quantum Inf.
**2018**, 4, 57. [Google Scholar] [CrossRef] - Kimble, H.J. The quantum internet. Nature
**2008**, 453, 1023. [Google Scholar] [CrossRef] [PubMed] - Raussendorf, R.; Briegel, J.H. A One-Way Quantum Computer. Phys. Rev. Lett.
**2001**, 86, 5188. [Google Scholar] [CrossRef] [PubMed] - Arute, F.; Arya, K.; Babbush, R.; Bacon, D.; Bardin, J.C.; Barends, R.; Biswas, R.; Boixo, S.; Brao, F.G.; Buell, D.A.; et al. Quantum supremacy using a programmable superconducting processor. Nature
**2019**, 574, 505. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Quantum Computing at IBM. Available online: https://www.ibm.com/quantum-computing/ (accessed on 1 October 2019).
- Reagor, M.; Osborn, C.B.; Tezak, N.; Staley, A.; Prawiroatmodjo, G.; Scheer, M.; Alidoust, N.; Sete, E.A.; Didier, N.; da Silva, M.P.; et al. Demonstration of universal parametric entangling gates on a multi-qubit lattice. Sci. Adv.
**2018**, 2, eaao3603. [Google Scholar] [CrossRef] [Green Version] - Bernien, H.; Schwartz, S.; Keesling, A.; Levine, H.; Omran, A.; Pichler, H.; Choi, S.; Zibrov, A.S.; Endres, M.; Greiner, M.; et al. Probing many-body dynamics on a 51-atom quantum simulator. Nature
**2017**, 551, 579. [Google Scholar] [CrossRef] - Barredo, D.; Lienhard, V.; De Leseleuc, S.; Lahaye, T.; Browaeys, A. Three-dimensional atomic structures assembled atom by atom. Nature
**2018**, 561, 79. [Google Scholar] [CrossRef] [Green Version] - Yoshikawa, J.; Yokoyama, S.; Kaji, T.; Sornphiphatphong, C.; Shiozawa, Y.; Makino, K.; Furusawa, A. Generation of one-million-mode continuous-variable cluster state by unlimited time-domain multiplexing. APL Photonics
**2016**, 1, 060801. [Google Scholar] [CrossRef] - Chen, M.; Menicucci, N.C.; Pfister, O. Experimental realization of multipartite entanglement of 60 modes of a quantum optical frequency comb. Phys. Rev. Lett.
**2014**, 112, 120505. [Google Scholar] [CrossRef] [Green Version] - Cai, Y.; Roslund, J.; Ferrini, G.; Arzani, F.; Xu, X.; Fabre, C.; Treps, N. Multimode entanglement in reconfigurable graph states using optical frequency combs. Nat. Commun.
**2017**, 8, 15645. [Google Scholar] [CrossRef] [Green Version] - Asavanant, W.; Shiozawa, Y.; Yokoyama, S.; Charoensombutamon, B.; Emura, H.; Alexander, R.N.; Takeda, S.; Yoshikaw, J.-I.; Menicucci, N.C.; Yonezawa, H.; et al. Generation of time-domain-multiplexed two-dimensional cluster state. Science
**2019**, 366, 363. [Google Scholar] [CrossRef] [Green Version] - Gu, M.; Weedbrook, C.; Menicucci, N.C.; Ralph, T.C.; van Loock, P. Quantum computing with continuous-variable clusters. Phys. Rev. A
**2009**, 79, 062318. [Google Scholar] [CrossRef] [Green Version] - Nokkala, J.; Arzani, F.; Galve, F.; Zambrini, R.; Maniscalco, S.; Piilo, J.; Treps, N.; Parigi, V. Reconfigurable optical implementation of quantum complex networks. New J. Phys.
**2018**, 20, 053024. [Google Scholar] [CrossRef] - Menicucci, N.C.; van Loock, P.; Gu, M.; Weedbrook, C.; Ralph, T.C.; Nielsen, M.A. Universal Quantum Computation with Continuous-Variable Cluster States. Phys. Rev. Lett.
**2006**, 97, 110501. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Ferrini, G.; Roslund, J.; Arzani, F.; Cai, Y.; Fabre, C.; Treps, N. Optimization of networks for measurement-based quantum computation. Phys. Rev. A
**2015**, 91, 032314. [Google Scholar] [CrossRef] [Green Version] - Sansavini, F. Quantum Information Protocols in Complex Entangled Networks. Master’s Thesis, Alma Mater Studiorum—Università di Bologna, Bologna, Italy, 2019. [Google Scholar]
- Hahn, F.; Pappa, A.; Eisert, J. Quantum network routing and local complementation. NPJ Quantum Inf.
**2019**, 76, 1359. [Google Scholar] [CrossRef] [Green Version] - Pirker, A.; Wallnöfer, J.; Dür, H.J. Modular architectures for quantum networks. New J. Phys.
**2018**, 20, 053054. [Google Scholar] [CrossRef] [Green Version] - Weedbrook, C.; Pirandola, S.; García-Patrón, R.; Cerf, N.J.; Ralph, T.C.; Shapiro, J.H.; Lloyd, S. Gaussian quantum information. Phys. Mod. Phys.
**2012**, 84, 621. [Google Scholar] [CrossRef] - Braunstein, S.L. Squeezing as an irreducible resource. Phys. Rev. A
**2005**, 71, 055801. [Google Scholar] [CrossRef] [Green Version] - Van Loock, P.; Weedbrook, C.; Gu, M. Building Gaussian cluster states by linear optics. Phys. Rev. A
**2007**, 76, 032321. [Google Scholar] [CrossRef] [Green Version] - Van Loock, P.; Markham, D. Implementing stabilizer codes by linear optics. AIP Conf. Proc.
**2011**, 1363, 256. [Google Scholar] - Dufour, A. Ingénierie D’états Quantiques Multimodes avec des Impulsions Femtosecondes. Ph.D. Thesis, Sorbonne Université, Paris, France, 2018. [Google Scholar]
- Barabási, A.; Albert, R. Emergence of Scaling in Random Networks. Science
**1999**, 286, 509–512. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Watts, D.; Strogatz, S. Collective dynamics of ‘small-world’ networks. Nature
**1998**, 393, 440–442. [Google Scholar] [CrossRef] [PubMed] - Erdős, P.; Rényi, A. On random graphs. Publ. Math. Debr.
**1959**, 6, 290–297. [Google Scholar] - Cai, Y. Quantum Coherent Control with an Optical Frequency Comb. Ph.D. Thesis, École Normale Supérieure, Paris, France, 2015. [Google Scholar]
- Einstein, A.; Podolsky, B.; Rosen, N. Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? Phys. Rev.
**1935**, 47, 777. [Google Scholar] [CrossRef] [Green Version] - Zhang, J.; Adesso, G.; Xie, C.; Peng, K. Quantum Teamwork for Unconditional Multiparty Communication with Gaussian States. Phys. Rev. Lett.
**2009**, 103, 070501. [Google Scholar] [CrossRef] [Green Version] - Menicucci, N.C.; Flammia, S.T.; van Loock, P. Graphical calculus for Gaussian pure states. Phys. Rev. A
**2011**, 83, 042335. [Google Scholar] [CrossRef] [Green Version] - Zyczkowski, K.; Kus, M. Random unitary matrices. J. Phys. A
**1994**, 27, 4235. [Google Scholar] [CrossRef] - Roslund, J.; Shir, O.M.; Bäck, T.; Rabitz, H. Accelerated optimization and automated discovery with covariance matrix adaptation for experimental quantum control. Phys. Rev. A
**2009**, 80, 043415. [Google Scholar] [CrossRef]

**Figure 1.**Rewiring of a regular 48-node network for the construction of a “small world” network as shown in [35].

**Figure 2.**Comparison between two models of complex networks, both with an average degree of $\langle k\rangle \sim 3.9$. The size of the dots increases with the number of links. (

**a**) Barabási–Albert model with ${m}_{BA}=2$, with a maximum node degree of k = 22; (

**b**) Erdős–Rényi model with ${p}_{ER}=4/49$, with a maximum node degree of k = 8.

**Figure 3.**Realistic implementation of complex cluster states. (

**a**) implementation of a cluster via a linear optics transformation acting on a series of squeezed modes; (

**b**) list of realistic squeezing values of the input modes for the implementation of a 48-mode cluster.

**Figure 4.**Plot of the mean squeezing value of the nullifiers of the cluster as a function of its average degree $\langle k\rangle $ for the different topologies of complex graphs. In the legend, “BA” = Barabási–Albert, “ER” = Erdős–Rényi, “WS p = 0” = Watts–Strogatz with ${p}_{WS}=0$, “WS p = 0.25” = Watts–Strogatz with ${p}_{WS}=0.25$ and “WS p = 0.5” = Watts–Strogatz with ${p}_{WS}=0.5$.

**Figure 5.**(

**a**) a quantum network is created; (

**b**) the resource is distributed to two spatially separated teams, Alice and Bob; (

**c**) Alice performs a linear optics operation ${U}_{A}$ on her set of nodes and Bob performs a linear optics operation ${U}_{B}$ on his set of nodes to create a quantum channel out of two given nodes; (

**d**) the quantum channel is established.

**Figure 6.**Graphs analyzed with the aim of creating an EPR channel between Alice (green) and Bob (blue) (or eventually between nodes of the same team).

**Table 1.**Mean $\mu $ and standard deviation $\sigma $ of the values ${\mu}_{j}$ of Equation (4) evaluated on $N=100$ Barabási–Albert (a) and Erdős–Rényi (b) graphs with different characterizing parameters and consequently different average degrees $\langle k\rangle $, optimized using the function $f({\Delta}^{2}{\delta}_{i})={\sum}_{i}{\Delta}^{2}{\overline{\delta}}_{i}$. Without the optimization protocol, $\mu $ takes the value of −3.48 dB for the Erdős–Rényi model, independently of the value of ${p}_{ER}$, and it oscillates between −3.48 dB and −3.72 dB for the Barabási–Albert model.

(a) Barabási–Albert | (b) Erdős–Rényi | ||||||
---|---|---|---|---|---|---|---|

${\mathit{m}}_{\mathit{B}\mathit{A}}$ | $\mathit{\mu}$ (dB) | $\mathbf{[}\mathit{\mu}\mathbf{\pm}\mathit{\sigma}\mathbf{]}$ (dB) | $\mathbf{\langle}\mathit{k}\mathbf{\rangle}$ | ${\mathit{p}}_{\mathit{E}\mathit{R}}$ | $\mathit{\mu}$ (dB) | $\mathbf{[}\mathit{\mu}\mathbf{\pm}\mathit{\sigma}\mathbf{]}$ (dB) | $\overline{\mathbf{\langle}{\mathit{k}}_{\mathit{j}}\mathbf{\rangle}}$ |

1 | −4.70 | [−4.73,−4.67] | 1.96 | 0.2 | −5.50 | [−5.54,−5.46] | 9.35 |

5 | −5.55 | [−5.58, −5.53] | 9.38 | 0.4 | −5.80 | [−5.83, −5.76] | 18.83 |

10 | −5.82 | [−5.84, −5.80] | 17.71 | 0.6 | −6.02 | [−6.04, −6.00] | 28.29 |

20 | −6.15 | [−6,16, −6.14] | 31.25 | 0.8 | −6.22 | [−6.23, −6.21] | 37.58 |

47 | −6.33 | [−6.33, −6.33] | 47 | 1 | −6.33 | [−6.33, −6.33] | 47 |

**Table 2.**Mean $\mu $ and standard deviation $\sigma $ of the values ${\mu}_{j}$ of Equation (4) evaluated on $N=100$ Watts–Strogatz graphs with different parameter ${p}_{WS}$ and different $\langle k\rangle $, optimized using the function $f({\Delta}^{2}{\delta}_{i})={\sum}_{i}{\Delta}^{2}{\overline{\delta}}_{i}$. Without the optimization protocol, $\mu $ takes the value of $-3.48$ dB, independently of the value of ${p}_{WS}$ or $\langle k\rangle $.

(a) $\mathbf{\langle}\mathit{k}\mathbf{\rangle}\mathbf{=}\mathbf{4}$ | (b) $\mathbf{\langle}\mathit{k}\mathbf{\rangle}\mathbf{=}\mathbf{8}$ | ||||
---|---|---|---|---|---|

${\mathit{p}}_{\mathit{W}\mathit{S}}$ | $\mathit{\mu}$ (dB) | $\mathbf{[}\mathit{\mu}\mathbf{\pm}\mathit{\sigma}\mathbf{]}$ (dB) | ${\mathit{p}}_{\mathit{W}\mathit{S}}$ | $\mathit{\mu}$ (dB) | $\mathbf{[}\mathit{\mu}\mathbf{\pm}\mathit{\sigma}\mathbf{]}$ (dB) |

0 | −5.19 | $[-5.19,-5.19]$ | 0 | −5.79 | $[-5.79,-5.79]$ |

0.1 | −5.16 | $[-5.17,-5.14]$ | 0.1 | −5.69 | $[-5.71,-5.66]$ |

0.4 | −5.10 | $[-5.12,-5.07]$ | 0.4 | −5.49 | $[-5.51,-5.46]$ |

0.7 | −5.09 | $[-5.11,-5.07]$ | 0.7 | −5.43 | $[-5.46,-5.40]$ |

1 | −5.09 | $[-5.12,-5.06]$ | 1 | −5.43 | $[-5.46,-5.41]$ |

**Table 3.**Means ${\mu}_{12}$, ${\mu}_{13}$ and $\mu $ of the nullifiers of the nodes 12 and 13 and of the value ${\mu}_{j}$ of Equation (5) evaluated on $N=100$ Barabási–Albert graphs with different parameter ${m}_{BA}$, optimized using the function $f({\Delta}^{2}{\widehat{\delta}}_{i})={\sum}_{i}{A}_{i}{\Delta}^{2}\overline{{\delta}_{i}}$, where ${A}_{i}={10}^{5}$ if $i=12,13$ and ${A}_{i}=1$ otherwise.

${\mathit{m}}_{\mathit{B}\mathit{A}}$ | ${\mathit{\mu}}_{\mathbf{12}}$ (dB) | ${\mathit{\mu}}_{\mathbf{13}}$ (dB) | $\mathit{\mu}$ (dB) |
---|---|---|---|

1 | −6.51 | −6.51 | −4.61 |

5 | −6.51 | −6.51 | −5.48 |

10 | −6.51 | −6.51 | −5.76 |

20 | −6.51 | −6.51 | −6.10 |

47 | −6.51 | −6.51 | −6.32 |

**Table 4.**Results on the possibility to create a quantum communication channel for the graphs of Figure 6, between nodes belonging to different teams A and B and between nodes belonging to the same team.

Graph | Between A and B | Same Team |
---|---|---|

6-node grid | Yes | No |

8-node grid | No | No |

10-node grid | Yes | No |

“X” | Yes | No |

“Y” | Yes | No |

Fully-connected | No | Yes |

“Z” | No | No |

Dual-rail | No | No |

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Sansavini, F.; Parigi, V.
Continuous Variables Graph States Shaped as Complex Networks: Optimization and Manipulation. *Entropy* **2020**, *22*, 26.
https://doi.org/10.3390/e22010026

**AMA Style**

Sansavini F, Parigi V.
Continuous Variables Graph States Shaped as Complex Networks: Optimization and Manipulation. *Entropy*. 2020; 22(1):26.
https://doi.org/10.3390/e22010026

**Chicago/Turabian Style**

Sansavini, Francesca, and Valentina Parigi.
2020. "Continuous Variables Graph States Shaped as Complex Networks: Optimization and Manipulation" *Entropy* 22, no. 1: 26.
https://doi.org/10.3390/e22010026