Information Geometrical Characterization of Quantum Statistical Models in Quantum Estimation Theory
Abstract
1. Introduction
2. Preliminaries
2.1. Tangent Space and Quantum Fisher Metric
2.2. Commutation Operator
2.3. Basic Lemmas
3. Model Class in Quantum Statistical Models
3.1. Asymptotic Bound: Holevo Bound
3.2. Classical Model
3.3. Quasi-Classical Model
3.4. D-Invariant Model
3.5. Asymptotically Classical Model
4. Model Classification and Characterization
4.1. Results
4.1.1. Classical Model
- 1.
- The model is classical (Definition 2).
- 2.
- , .
- 3.
- , .
- 4.
- .
- 5.
- , .
- 6.
- .
- 7.
- .
- 8.
- The model is D-invariant and asymptotically classical.
4.1.2. D-Invariant Model
- 1.
- is D-invariant at θ (Definition 3).
- 2.
- , .
- 3.
- , .
- 4.
- 5.
- , .
- 6.
- , with respect to ⇒ with respect to .
- 7.
- is an invariant subspace of the commutation operator .
4.1.3. Asymptotically Classical Model
- 1.
- is asymptotically classical (Definition 4).
- 2.
- , .
- 3.
- .
- 4.
- .
- 5.
- , .
4.1.4. Matrices
- 1.
- is classical. ⇔ ⇔ ⇔
- 2.
- is D-invariant. ⇔ ⇔
- 3.
- is asymptotically classical. ⇔
4.2. Discussion on the Results
4.2.1. Tangent Vector
4.2.2. Quantum Fisher Metric
4.2.3. Tangent Space
4.2.4. Asymptotic Bound
4.3. Proofs
4.3.1. Proof for Proposition 1
4.3.2. Proof for Proposition 2
4.3.3. Proof for Proposition 3
4.3.4. Proof for Theorem 2
5. Examples
5.1. Qubit Models
- is D-invariant. ⇔ is independent of .
- is asymptotically classical. ⇔ () is orthogonal to .
5.2. Non-Classical Quasi-Classical Model
6. Concluding Remarks
Funding
Acknowledgments
Conflicts of Interest
References
- Amari, S.-I. Differential-Geometrical Methods in Statistics; Springer: Berlin/Heidelberg, Germany, 1985; Volume 28. [Google Scholar]
- Amari, S.; Nagaoka, H. Methods of Information Geometry (Translations of Mathematical Monographs); American Mathematical Society: Providence, RI, USA, 2000; Volume 191. [Google Scholar]
- Ay, N.; Jost, J.; Le, H.V.; Schwachhöfer, L. Information Geometry; Springer Nature: Gewerbestrasse, Switzerland, 2017. [Google Scholar]
- Felice, D.; Cafaro, C.; Mancini, S. Information geometric methods for complexity. CHAOS 2018, 28, 032101. [Google Scholar] [CrossRef] [PubMed]
- Helstrom, C.W. Quantum Detection and Estimation Theory; Academic Press: New York, NY, USA, 1976. [Google Scholar]
- Giovannetti, V.; Lloyd, S.; Maccone, L. Advances in quantum metrology. Nat. Photonics 2011, 5, 222–229. [Google Scholar] [CrossRef]
- Tóth, G.; Apellaniz, I. Quantum metrology from a quantum information science perspective. J. Phys. A Math. Theor. 2014, 47, 424006. [Google Scholar] [CrossRef]
- Demkowicz-Dobrzański, R.; Jarzyna, M.; Kołodyński, J. Quantum Limits in Optical Interferometry. Prog. Opt. 2015, 60, 345–435. [Google Scholar]
- Pezzé, L.; Smerzi, A. Quantum theory of phase estimation. In Atom Interferometry; Tino, G.M., Kasevich, M.A., Eds.; IOS Press: Amsterdam, The Netherlands, 2014; pp. 691–741. [Google Scholar]
- Szczykulska, M.; Baumgratz, T.; Datta, A. Multi-parameter quantum metrology. Adv. Phys. X 2016, 1, 621–639. [Google Scholar] [CrossRef]
- Degen, C.L.; Reinhard, F.; Cappellaro, P. Quantum sensing. Rev. Mod. Phys. 2017, 89, 035002. [Google Scholar] [CrossRef]
- Nagaoka, H. On the parameter estimation problem for quantum statistical models. In Proceedings of the 12th International Symposium on Information Theory and Its Applications (ISITA), Inuyama, Japan, 6–9 December 1989; pp. 577–582. [Google Scholar]
- Hayashi, M. (Ed.) Asymptotic Theory of Quantum Statistical Inference: Selected Papers; World Scientific: Singapore, 2005. [Google Scholar]
- Petz, D. Quantum Information Theory and Quantum Statistics; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Holevo, A.S. Probabilistic and Statistical Aspects of Quantum Theory, 2nd ed.; Edizioni della Normale: Pisa, Italy, 2011. [Google Scholar]
- Hayashi, M.; Matsumoto, K. Asymptotic performance of optimal state estimation in qubit system. J. Math. Phys. 2008, 49, 102101. [Google Scholar] [CrossRef]
- Guţă, M.; Kahn, J. Local asymptotic normality for qubit states. Phys. Rev. A 2006, 73, 052108. [Google Scholar] [CrossRef]
- Kahn, J.; Guţă, J. Local asymptotic normality in quantum statistics. Commun. Math. Phys. 2009, 289, 341–379. [Google Scholar] [CrossRef]
- Yamagata, K.; Fujiwara, A.; Gill, R.D. Quantum local asymptotic normality based on a new quantum likelihood ratio. Ann. Stat. 2013, 41, 2197–2217. [Google Scholar] [CrossRef]
- Fujiwara, A.; Yamagata, K. Noncommutative Lebesgue decomposition with application to quantum local asymptotic normality. arXiv 2017, arXiv:1703.07535. [Google Scholar]
- Yang, Y.; Chiribella, G.; Hayashi, M. Attaining the ultimate precision limit in quantum state estimation. Commun. Math. Phys. 2019, 368, 223–293. [Google Scholar] [CrossRef]
- Suzuki, J. Explicit formula for the Holevo bound for two-parameter qubit-state estimation problem. J. Math. Phys. 2016, 57, 042201. [Google Scholar] [CrossRef]
- Nagaoka, H. A New Approach to Cramér-Rao Bounds for Quantum State Estimation; IEICE Technical Report; IEICE: Tokyo, Japan, 1989; pp. 9–14. [Google Scholar]
- Nagaoka, H. On Fisher information of quantum statistical models. In Proceedings of the 10th Symposium on Information Theory and Its Applications (SITA), Yokohama, Japan, 19–21 November 1987; pp. 241–246. [Google Scholar]
- Matsumoto, K. A Geometrical Approach to Quantum Estimation Theory. Ph.D. Thesis, University of Tokyo, Tokyo, Japan, 1997. [Google Scholar]
- Suzuki, J. Explicit formula for the Holevo bound for two-parameter qubit estimation problems. In Proceedings of the 32nd Quantum Information Technology Symposium (QIT32), Suita, Japan, 26 May 2015; pp. 125–130. [Google Scholar]
- Ragy, S.; Jarzyna, M.; Demkowicz-Dobrzański, R. Compatibility in multiparameter quantum metrology. Phys. Rev. A 2016, 94, 052108. [Google Scholar] [CrossRef]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suzuki, J. Information Geometrical Characterization of Quantum Statistical Models in Quantum Estimation Theory. Entropy 2019, 21, 703. https://doi.org/10.3390/e21070703
Suzuki J. Information Geometrical Characterization of Quantum Statistical Models in Quantum Estimation Theory. Entropy. 2019; 21(7):703. https://doi.org/10.3390/e21070703
Chicago/Turabian StyleSuzuki, Jun. 2019. "Information Geometrical Characterization of Quantum Statistical Models in Quantum Estimation Theory" Entropy 21, no. 7: 703. https://doi.org/10.3390/e21070703
APA StyleSuzuki, J. (2019). Information Geometrical Characterization of Quantum Statistical Models in Quantum Estimation Theory. Entropy, 21(7), 703. https://doi.org/10.3390/e21070703