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Abstract: In this paper, we classify quantum statistical models based on their information geometric
properties and the estimation error bound, known as the Holevo bound, into four different classes:
classical, quasi-classical, D-invariant, and asymptotically classical models. We then characterize
each model by several equivalent conditions and discuss their properties. This result enables us to
explore the relationships among these four models as well as reveals the geometrical understanding
of quantum statistical models. In particular, we show that each class of model can be identified
by comparing quantum Fisher metrics and the properties of the tangent spaces of the quantum
statistical model.
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1. Introduction

Information geometry about a statistical model offers simple and powerful understanding of
statistical inference problems (see, for example, books [1–3] and the recent review on the subject [4]).
A family of probability distributions is regarded as an element of a statistical manifold. Thereby, we can
introduce geometrical quantities such as a Riemannian metric and affine connection. The celebrated
Chentsov’s theorem selects the unique metric (up to a constant factor), called the Fisher metric or Fisher
information matrix, which is invariant under the Markov map. Statistically meaningful connections
are also given as a one-parameter family, known as the α-connection, which exhibits the famous
duality relationship.

The non-commutative extension of classical statistics to a quantum system was initiated in the
1960s by Helstrom [5] and has been one of the fundamental problems in quantum information theory
until today. In particular, recent advances in quantum metrology, quantum sensing, and quantum
imaging, i.e., high precision measurement methods utilizing quantum resources, has triggered many
activities in the field (see reviews on these subjects [6–11]). Despite these efforts in past, there exist
many open problems regarding multi-parameter estimation problems.

The information geometrical study on quantum statistical manifolds is of fundamental interest,
yet is still at the developing stage [2,4,12,13]. For example, the uniqueness of Fisher metric does no
longer holds in the quantum case. Instead, we have a family of operator monotone metrics on quantum
statistical manifold [14]. Related to this non-uniqueness of a metric, the asymptotically achievable
bound for the mean square error matrix is not expressed as a simple form of a certain quantum version
of Fisher metric in general. Recent studies on the first-order asymptotic theory proves that the Holevo
bound [15] can be achieved under certain regularity condition [16–21]. The Holevo bound, as defined
in Section 3.1, is expressed as a nonlinear optimization problem. Hence, it is not totally clear whether
we can draw any geometrical structure for it or not. Holevo introduced a particular class of quantum
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statistical models, called a D-invariant model, based on the invariant property of the tangent space,
and showed that the right logarithmic derivative (RLD) Cramér–Rao (CR) bound can be achieved for
the D-invariant model. To our knowledge, less is known regarding a connection between information
geometrical properties of quantum statistical models and the Holevo bound.

One of the main motivations of this paper is to make an attempt at classifying quantum statistical
models based on the Holevo bound, and then to associate these classified models with geometrical
quantities. The current paper is based on the results presented in Ref. [22], where we analyzed the
structure of the Holevo bound in detail for a qubit system. We derived an explicit formula for any
qubit model together with characterization of special classes of the qubit models. We also classified
the D-invariant model for the general qubit model together with nontrivial characterization of this
model. However, we did not develop a systematic analysis of characterizations for these models in the
previous study. What was missing in the previous studies was to consider two different tangent spaces
in a unified manner. In this paper, we continue to explore possible classification of arbitrary quantum
statistical models into several classes in which the Holevo bound can be expressed in closed formulas.
By treating two tangent spaces with equal footings, we derive simple yet geometrically transparent
characterizations of statistically meaningful models. Another contribution of this paper is to show that
the super-operator, which was originally introduced to study the D-invariant model, also enables us to
characterize other classes of quantum statistical models.

In this paper, we consider four different classes: The first class is the classical model where
a quantum statistical model is reduced to a statistical model in classical statistics. The second class is
known as the quasi-classical model defined by the condition imposing all quantum score operators
commute with each other. The third class is known as the D-invariant model introduced by Holevo [15].
It was shown in Ref. [22] that the Holevo bound is equivalent to the RLD CR bound if and only if
the model is D-invariant. The fourth class is when the Holevo bound coincides with the symmetric
logarithmic derivative (SLD) CR bound. We call this class of models as the asymptotically classical
in the sense that the model is asymptotically equivalent to a classical Gaussian model in the local
asymptotic normality (LAN) theory [16–21]. The results of this paper are given by the propositions
and theorem in Section 4.1. In Figure 1, we summarize the relations among four different classes
of quantum statistical models. Figure 2 in Section 4.1 represents a schematic diagram for the main
theorem of this paper. Out result shows that three classes of models can be characterized simply by
comparing quantum Fisher metrics.
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Figure 1. A schematic diagram for model classification of quantum parametric models. A generic
quantum parametric modelM is indicated by the rectangular box. The blue vertically shadowed area
represents the D-invariant model. The red horizontally shadowed area is the asymptotically classical
model. The green diagonally shadowed area is the quasi-classical model. The intersection of the
D-invariant model and the asymptotically classical model represents the classical model.

The content of this paper is summarized as follows. Section 2 provides preliminaries for notations
and mathematical tools used in this paper. In Section 2.3, a few lemmas are proven to be useful for
classifying quantum statistical models. In Section 3, we list the definitions of four different classes of
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statistical models. Our main results are given in the next section. Section 4.1 gives the main results
of this paper. In Section 4.2, we discuss the geometrical meaning of the results in detail. Proofs for
the theorem and propositions are given in Section 4.3. Several examples are discussed in Section 5
to illustrate our findings. The last section, Section 6, concludes the paper with a few remarks and
open problems.

2. Preliminaries

A quantum systemH is a d-dimensional Hilbert space on the complex number. Denote by L(H)

a set of (bounded) linear operators fromH to itself, and by Lh(H) a set of linear and hermite operators
from H to itself. A quantum state is a positive semi-definite operator on H with unit trace. Let us
denote a set of all quantum states on H by S(H) and all full-ranked quantum states by S(H). A
quantum statistical model is defined by a parametric family of quantum states

M := {ρθ ∈ S(H) | θ = (θ1, θ2, . . . , θn) ∈ Θ}, (1)

where Θ is an open subset of Rn. As in classical statistics, we impose several regularity conditions,
such as one-to-one smooth mapping, θ 7→ ρθ , differentiability, linearly independence of partial
derivatives ∂ρθ/∂θi with respect to the coordinates (θi), non-degeneracy for the eigenvalues, and so on.
In the following discussions, we assume all these regularity conditions to avoid non-regular behaviors
of the statistical model. In particular, we mainly consider a quantum statistical model of full-rank
states unless stated explicitly.

2.1. Tangent Space and Quantum Fisher Metric

We define two quantum versions of the score functions, called logarithmic derivative operators,
as follows. For a given quantum state ρθ and any operators X, Y ∈ L(H), define the symmetric
logarithmic derivative (SLD) and right logarithmic derivative (RLD) inner products by

〈X, Y〉Sρθ
:=

1
2

tr
(

ρθ(YX† + X†Y)
)

,

〈X, Y〉Rρθ
:= tr

(
ρθYX†

)
, (2)

respectively, where X† denotes the hermite conjugate of X. When X and Y are both hermite,
〈X, Y〉Sρθ

= Re 〈X, Y〉Rρθ
holds. The ith SLD and RLD operators, Li and L̃i, are formally defined by

the solutions to the operator equations:

∂iρθ =
1
2
(ρθ Lθ,i + Lθ,iρθ),

∂iρθ = ρθ L̃θ,i. (3)

for i = 1, 2, . . . , n, where ∂i := ∂
∂θi denotes the partial derivative with respect to θi. It is not difficult to

see that the SLD operators are hermite, whereas RLD operators are not in general.
The SLD and RLD Fisher metrics, or quantum information matrices, are defined by

Gθ :=
[
gθ,ij

]
with gθ,ij := 〈Lθ,i, Lθ,j〉Sρθ

,

G̃θ :=
[
g̃θ,ij

]
with g̃θ,ij := 〈L̃θ,i, L̃θ,j〉Rρθ

, (4)

respectively. It is known that the SLD Fisher metric is the smallest and the real part of RLD Fisher
metric is the largest operator monotone metrics on the quantum state space [14].

The SLD tangent space is defined by the linear span of SLD operators:

Tθ(M) := spanR{Lθ,i} ⊂ Lh(H), (5)
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and the RLD tangent space is defined by the linear span of RLD operators with complex coefficients:

T̃θ(M) := spanC{L̃θ,i} ⊂ L(H). (6)

Let G−1
θ = [gij

θ ] be the inverse of the SLD Fisher information matrix and G̃−1
θ = [g̃ij

θ ] be the inverse
for the RLD Fisher information matrix. It is convenient to introduce the following linear combinations
of the logarithmic derivative operators

Li
θ :=

n

∑
j=1

gji
θ Lθ,j,

L̃i
θ :=

n

∑
j=1

g̃ji
θ L̃θ,j. (7)

By definitions, {Li
θ} forms a dual basis for the inner product space 〈·, ·〉Sρθ

; 〈Li
θ , Lθ,j〉Sρθ

= δi
j, which

we call the SLD dual operator. The same statement holds for the RLD case.
Noting that the SLD and RLD operators are types of exponential representations of the tangent

vector ∂i, we can show the next lemma.

Lemma 1. For ∀X ∈ L(H), and ∀ f ∈ C∞(R), the following holds.

〈 f (Lθ,i), X〉Sρθ
= 〈 f (L̃θ,i), X〉Rρθ

, (8)

Proof. We note that the definitions of logarithmic derivative operators give

〈Lθ,i, X〉Sρθ
= 〈L̃θ,i, X〉Rρθ

= tr (∂iρθX) , (9)

and repeated applications of this relation proves

〈(Lθ,i)
k, X〉Sρθ

= 〈(L̃θ,i)
k, X〉Rρθ

, (10)

for any integer power k. It is then easy to prove Equation (8).

As an application of this lemma, we have alternative expressions for the quantum Fisher
information matrices:

gij
θ = 〈L̃i

θ , Lj
θ〉

S
ρθ

,

g̃ij
θ = 〈L̃i

θ , Lj
θ〉

R
ρθ

, (11)

which follow directly from definitions of gij
θ and g̃ij

θ .

2.2. Commutation Operator

For a given quantum statistical model of Equation (1), we define a super-operator Dρθ
from L(H)

to itself, whose action on X ∈ L(H) is determined by the operator equation:

[ρθ , X] := ρθX− Xρθ = iρθDρθ
(X) + iDρθ

(X)ρθ . (12)

The super-operator Dρθ
, called the commutation operator at θ, was introduced by Holevo [15].

By definition, we can check that the super-operator Dρθ
is linear. Denoting the identity operator I, the

following relationship holds
Lθ,i = (I + iDρθ

)(L̃θ,i), (13)

which can be proven by the direct calculation.
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The properties useful in our discussion are given in the next lemma.

Lemma 2. For ∀X, Y ∈ L(H), the following relations hold.

〈Dρθ
(X), Y〉Sρθ

= −〈X,Dρθ
(Y)〉Sρθ

, (14)

〈Dρθ
(X), Y〉Rρθ

= −〈X,Dρθ
(Y)〉Rρθ

. (15)

Proof. The first relationship can be proven directly as

2〈Dρθ
(X), Y〉Sρθ

= tr
(
ρθ(Dρθ

(X)Y + YDρθ
(X))

)
= tr

(
(ρθDρθ

(X) +Dρθ
(X)ρθ)Y

)
= tr ((−i)[ρθ , X]Y)

= −tr ((−i)[ρθ , Y]X)

= −tr
(
(ρθDρθ

(Y) +Dρθ
(Y)ρθ)X

)
= −2〈X,Dρθ

(Y)〉Sρθ
,

and Equation (15) can be proven similarly.

2.3. Basic Lemmas

In this subsection, we list several lemmas that are used in our discussion. We define two hermite
matrices, Zθ , Z̃θ in terms of SLD and RLD dual operators as follows.

Zθ := [zij
θ ] with zij

θ := 〈Li
θ , Lj

θ〉
R
ρθ

, (16)

Z̃θ := [z̃ij
θ ] with z̃ij

θ := 〈L̃i
θ , L̃j

θ〉
S
ρθ

. (17)

By definition, they are complex matrices in general. Hermiteness can be checked directly by

(zij
θ )
∗ = tr

(
(ρθ Lj

θ Li
θ

†
)†
)
= tr

(
ρθ Li

θ Lj
θ

†
)
= zji

θ , (18)

where X∗ denotes the complex conjugation of X ∈ L(H). Hermiteness of the matrix Z̃θ can be
checked similarly. We remark that Zθ and Z̃θ are to be used to construct the quantum Fisher metrics,
since they define inner products on the tangent space. However, they are not operator monotone
metrics in general.

Together with the SLD and RLD Fisher information matrices, we list four matrices for comparison:

G−1
θ = [gij

θ ], gij
θ = 〈Li

θ , Lj
θ〉

S
ρθ

,

G̃−1
θ = [g̃ij

θ ], g̃ij
θ = 〈L̃i

θ , L̃j
θ〉

R
ρθ

,

Zθ = [zij
θ ], zij

θ = 〈Li
θ , Lj

θ〉
R
ρθ

,

Z̃θ = [z̃ij
θ ], z̃ij

θ = 〈L̃i
θ , L̃j

θ〉
S
ρθ

. (19)

By definition, Re (Z−1
θ ) = Gθ and Re Zθ = G−1

θ hold, where Re X := (X + X∗)/2 denotes the real
part of X ∈ L(H).

First, it is straightforward to see that the operator Li
θ − L̃i

θ enjoys the following property.

Lemma 3. Li
θ − L̃i

θ is orthogonal to the SLD tangent space Tθ(M) with respect to 〈·, ·〉Sρθ
, and is orthogonal to

the RLD tangent space T̃θ(M) with respect to 〈·, ·〉Rρθ
.
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Proof. Direct calculation shows

〈Lθ,j, Li
θ − L̃i

θ〉Sρθ
= 〈Lθ,j, Li

θ〉Sρθ
− 〈Lθ,j, L̃i

θ〉Sρθ

= 〈Lθ,j, Li
θ〉Sρθ
− 〈L̃θ,j, L̃i

θ〉Rρθ

= δi
j − δi

j = 0,

where Lemma 1 with f (x) = x is used to get the second line.
Orthogonality to the RLD tangent space with respect to the RLD inner product can be proven

similarly.

The following matrix inequalities between Gθ , G̃θ , Zθ , and Z̃θ are fundamental.

Lemma 4. Two matrix inequalities,

Zθ ≥ G̃−1
θ ,

Z̃θ ≥ G−1
θ , (20)

hold where the necessary and sufficient condition for the equality is the same and given by ∀i, Li
θ − L̃i

θ = 0.

Proof. Let mi
θ := Li

θ − L̃i
θ and define an n× n hermite matrix,

M̃θ := [〈mi
θ , mj

θ〉
R
ρθ
]. (21)

The matrix M̃θ is then positive semi-definite. Using Lemma 3, we can also express matrix elements
of M̃θ as

〈mi
θ , mj

θ〉
R
ρθ

= 〈mi
θ , Lj

θ〉
R
ρθ
− 〈mi

θ , L̃j
θ〉

R
ρθ

= 〈Li
θ , Lj

θ〉
R
ρθ
− 〈L̃i

θ , Lj
θ〉

R
ρθ

= zij
θ −∑

k
g̃ik

θ 〈L̃θ,k, Lj
θ〉

R
ρθ

= zij
θ −∑

k
g̃ik

θ 〈Lθ,k, Lj
θ〉

S
ρθ

= zij
θ − g̃ij

θ ,

where the second equality is due to Lemma 3. The third equality follows from definition of the RLD
dual operator. The fourth equality is due to Lemma 1. Therefore, we show the matrix inequality
M̃θ = Zθ − G̃−1

θ ≥ 0. The equality is satisfied if and only if this matrix M̃θ is zero. This is equivalent to
mi

θ = Li
θ − L̃i

θ = 0 for all i = 1, 2, . . . , n.
The second inequality can be proven in the same way by starting with another positive

semi-definite matrix Mθ := [〈mi
θ , mj

θ〉
S
ρθ
].

Next, define mθ,i := Lθ,i − L̃θ,i and consider another hermite matrix Mθ := [〈mθ,i, mθ,j〉Sρθ
].

Following exactly the same logic as in Lemma 4, we can prove the next lemma.

Lemma 5. Two matrix inequalities

Gθ + G̃θ Z̃θG̃θ ≥ 2G̃θ ,

G̃θ + GθZθGθ ≥ 2Gθ , (22)

hold where the necessary and sufficient condition for the equality is the same and given by ∀i, Lθ,i − L̃θ,i = 0.
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Finally, the commutation operator and logarithmic operators satisfy the following relations (we
note that Equation (37) in the previous publication [22] contains a typo in the same formula, thus
Lemma 6 in this paper reports the corrected version). Importantly, the right hand side of each equation
is expressed as the difference between two hermite matrices defined in Equation (19).

Lemma 6.

〈Li
θ , iDρθ

(Lj
θ)〉

S
ρθ

= zij
θ − gij

θ = i Im zij
θ , (23)

〈L̃i
θ , iDρθ

(Lj
θ)〉

S
ρθ

= g̃ij
θ − gij

θ , (24)

〈Li
θ , iDρθ

(L̃j
θ)〉

S
ρθ

= g̃ij
θ − gij

θ , (25)

〈L̃i
θ , iDρθ

(L̃j
θ)〉

S
ρθ

= g̃ij
θ − z̃ij

θ , (26)

hold for ∀i, j, where Im X := (X− X∗)/2i denotes the imaginary part of X ∈ L(H).

Proof. Using definitions of the SLD and RLD inner product, and the commutation operator, we have

〈X, Y〉Rρθ
− 〈X, Y〉Sρθ

=
1
2

tr
(

ρθ [Y , X†]
)

=
1
2

tr
(
[ρθ , Y]X†

)
=

i
2

tr
(
(ρθDρθ

(Y) +Dρθ
(Y)ρθ)X†

)
=

i
2

tr
(

ρθ(Dρθ
(Y)X† + X†Dρθ

(Y))
)

= 〈X, iDρθ
(Y)〉Sρθ

,

for all X, Y ∈ L(H). We now set X = Li
θ , Y = Lj

θ , and then this proves Equation (23). The choice of

X = L̃i
θ , Y = Lj

θ and the use of the expressions in Equation (11) gives Equation (24). The relation in

Equation (25) can be shown similarly by X = Li
θ and Y = L̃j

θ . Last, if we let X = L̃i
θ , Y = L̃j

θ , we obtain
Equation (26).

3. Model Class in Quantum Statistical Models

In this section, we first define the Holevo bound. We then consider four different classes for
quantum statistical models. The first class is purely classical. The second class is a quasi-classical
model. The third and fourth ones are nontrivial, the D-invariant and asymptotically classical
models, respectively.

3.1. Asymptotic Bound: Holevo Bound

In this subsection, we give a brief summary of the asymptotic theory on quantum state
estimation [13]. As in classical statistics, we are given N-tensor product of identically and
independently distributed (i.i.d.) quantum states ρ⊗N

θ := ρθ ⊗ ρθ ⊗ · · · ⊗ ρθ on H. We perform
a measurement Π̂(N) on ρ⊗N

θ , which is described by a set of matrices under certain conditions, to infer
an unknown parameter value θ. The estimation error of the measurement Π̂(N) is evaluated by the
standard mean-square error (MSE) matrix V(N)

θ [Π̂(N)]. In the asymptotic theory of quantum state
estimation, one minimizes the weighted trace of the MSE matrix under an additional condition as
follows (to distinguish trace tr(·) on the state space, we use Tr{·} for the trace on the parameter space).

Cθ [W] := inf
{Π̂(N)} is a.u.

{
lim sup

N→∞
N Tr

{
WV(N)

θ [Π̂(N)]
} }

, (27)
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where W > 0 is an arbitrary positive-definite weight matrix and a.u. indicates that infimum is
taken over all possible asymptotically unbiased estimators. The first-order estimation error bound
in Equation (27) is usually referred to as the CR type bound in the literature. There have been many
mathematical works to obtain an alternative expression for the CR bound in terms of information
quantities, such as the quantum Fisher information matrix. Unlike classical statistics, where the bound
is given by the Fisher information matrix, the above bound cannot be written as a simple closed
formula in general. However, it takes the following optimization form known as the Holevo bound:

CH
θ [W] := inf

~X∈Xθ

hθ [~X|W]. (28)

In this definition, the set Xθ is defined by

Xθ := {~X = (X1, X2, . . . , Xn) | ∀i, Xi ∈ Lh(H), ∀i, tr
(

ρθXi
)
= 0, ∀i, j, tr

(
∂ρθ

∂θi X j
)
= δ

j
i}.

Introducing the n× n hermite matrix Hθ [~X] :=
[
〈Xi, X j〉Rρθ

]
, we define the function hθ [~X|W] by

hθ [~X|W] := Tr
{

WRe Hθ [~X]
}
+ Tr

{
|W

1
2 Im Hθ [~X]W

1
2 |
}

,

where |X| =
√

X†X denotes the absolute value of a linear operator X. The following theorem
establishes that the Holevo bound is equal to the CR type bound.

Theorem 1. For a quantum statistical model satisfying the regularity conditions, Cθ [W] = CH
θ [W] holds for

all weight matrices.

Proofs based on different assumptions can be found in Refs. [16–21]. The Holevo bound is
regarded as unification of previously known bounds [23], such as the SLD and RLD CR bounds:

CS
θ [W] := Tr

{
WG−1

θ

}
, (29)

CR
θ [W] := Tr

{
WRe G̃−1

θ

}
+ Tr

{
|W

1
2 Im G̃−1

θ W
1
2 |
}

. (30)

Importantly, the relation CH
θ [W] ≥ max{CS

θ [W], CR
θ [W]} holds for all W > 0 [15].

3.2. Classical Model

At each point θ ∈ Θ, the quantum state ρθ can be diagonalized with a unitary Uθ as ρθ = UθΛθU−1
θ ,

where the diagonal matrix,

Λθ =


pθ(1) 0 · · · 0

0 pθ(2) · · · 0
...

...
. . .

...
0 0 · · · pθ(d)

 , (31)

lists the eigenvalues of the state ρθ . By definition, ∀i, pθ(i) > 0 and ∑d
i=1 pθ(i) = 1. In other words,

Λθ can be regarded as an element of P(d) := the set of all (positive) probability distributions on the set
{1, 2, . . . , d}. When the unitary Uθ is independent of θ for all point in Θ, it is clear that any statistical
problem is reduced to the classical one. With this identification, we have the following definition.
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Definition 1 (Classical statistical model). For a given quantum statistical model of Equation (1), the model
is said classical if the family of quantum states ρθ can be diagonalized with a θ-independent unitary U as

ρθ = UΛθU−1, (32)

for all parameter values θ ∈ Θ.

3.3. Quasi-Classical Model

The second class of quantum statistical models is known in the literature. It is called
a quasi-classical model, which was originally introduced in Ref. [24].

Definition 2 (Quasi-classical model). A quantum statistical model of Equation (1) is said quasi-classical, if
all SLD operators commute with each other at all points θ. That is,

[Lθ,i , Lθ,j] = 0, ∀i, j ∈ {1, 2, . . . , n}, (33)

hold for all parameter values θ ∈ Θ.

Clearly, if the model is classical, then it is also quasi-classical. However, the converse statement
does not hold in general. A simple counter example is discussed in Section 5.2. It is also easy to see
that any one-parameter model is automatically quasi-classical.

An important property of quasi-classical models is that we can diagonalize all SLD operators
simultaneously. It is then possible to perform a measurement that saturates the SLD CR bound defined
in Equation (29) explicitly. Last, the concept of quasi-classical model makes sense for a particular point
θ, if all SLDs at θ commute with each other.

3.4. D-Invariant Model

Holevo introduced an important class of quantum statistical models based on the commutation
operator Dρθ

[15].

Definition 3 (D-invariant model (Holevo)). A quantum statistical model of Equation (1) is called
D-invariant at θ, if the SLD tangent space at θ is an invariant subspace of the commutation operator.

Mathematically, this condition is expressed as ∀X ∈ Tθ(M), Dρθ
(X) ∈ Tθ(M) at θ. For our

discussion, we focus on the D-invariant model at all θ (global D-invariance). For (globally) D-invariant
models, the Holevo bound can be expressed analytically and coincides with the RLD CR bound [15],
i.e., ∀W > 0, CH

θ [W] = CR
θ [W], and its achievability is discussed in the literature.

3.5. Asymptotically Classical Model

The last class of quantum statistical models is when the Holevo bound coincides with the SLD
CR bound.

Definition 4. A quantum statistical model of Equation (1) is called asymptotically classical, if the Holevo
bound is identical to the SLD CR bound for all positive weight matrices.

Mathematically, this definition is expressed by the condition: ∀W > 0, CH
θ [W] = CS

θ [W].

4. Model Classification and Characterization

In this section, we give classification of quantum statistical models based on the definitions
introduced in Section 3. In the following, we denote the set of all classical models, quasi-classical
models, D-invariant models, and asymptotically classical models onH byMC,MQC,MD, andMAC,
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respectively. We first list the results on several equivalent characterization of each model class.
Discussions on the results are presented followed by the proofs in Section 4.3.

4.1. Results

4.1.1. Classical Model

The following proposition characterizes the classical model.

Proposition 1. For a given (regular) quantum statistical model of Equation (1), the following conditions are
all equivalent.

1. The model is classical (Definition 2).
2. ∀X ∈ Tθ(M), [X , ρθ ] = 0.
3. ∀X ∈ T̃θ(M), [X , ρθ ] = 0.
4. Gθ = G̃θ .
5. ∀i, Lθ,i = L̃θ,i.
6. Dρθ

(Tθ(M)) = 0.
7. Dρθ

(T̃θ(M)) = 0.
8. The model is D-invariant and asymptotically classical.

Here, we remind that all statements are made for the global aspect of the model, i.e., for all points θ ∈ Θ.

We note that this result, equivalence between Condition 1 and Condition 4, was also stated in
Ref. [25].

4.1.2. D-Invariant Model

In Ref. [22], we derived several equivalent characterizations of the D-invariant model.
For readers’ convenience, we summarize them in the following proposition together with the new
characterization 7.

Proposition 2. Given a quantum statistical model, the following conditions are equivalent.

1. M is D-invariant at θ (Definition 3).
2. ∀W > 0, CH

θ [W] = CR
θ [W].

3. ∀i, Dρθ
(Li

θ) = ∑j(Im Zθ)
jiLθ,j.

4. Zθ = G̃−1
θ

5. ∀i, Li
θ = L̃i

θ .
6. ∀Xi ∈ Lh(H), Xi − Li

θ⊥Tθ(M) with respect to 〈·, ·〉Sρθ
⇒ Xi − Li

θ⊥Tθ(M) with respect to 〈·, ·〉Rρθ
.

7. T̃θ(M) is an invariant subspace of the commutation operator Dρθ
.

The proof for equivalence among the first two conditions, Conditions 1 and 2, was given by
Theorem 2.5 of Ref. [22]. The proof for equivalence to other five conditions, Conditions 3–6, was given
by Lemma B.1 of Ref. [22].

4.1.3. Asymptotically Classical Model

With this notion of the asymptotically classical model, we have the following result.

Proposition 3. For a regular quantum statistical model, the following equivalences hold:

1. M is asymptotically classical (Definition 4).
2. ∃W0 > 0, CH

θ [W0] = CS
θ [W0].

3. Zθ = G−1
θ .

4. Im Zθ = 0.
5. ∀i, j, tr

(
ρθ [Lθ,i, Lθ,j]

)
= 0.
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We note that the equivalence among Conditions 1, 3, 4 and 5 were first stated in Ref. [26] without
proof. Equivalence between the first and the last conditions (Conditions 1 and 5) was independently
proven in Ref. [27], in which the authors named the “compatibility condition”. Condition 2 was
suggested by Nagaoka (Private communication (2015)).

4.1.4. G−1
θ , G̃−1

θ , Zθ , Z̃θ Matrices

Combining the previous lemmas and theorems with additional analysis, we can obtain another
characterizations of quantum statistical models based on the four hermite matrices, G−1

θ , G̃−1
θ , Zθ , Z̃θ .

This is summarized in the next theorem.

Theorem 2. Given a quantum statistical model, we have the following equivalences.

1. M is classical. ⇔ G−1
θ = G̃−1

θ ⇔ G̃−1
θ = Z̃θ ⇔ Zθ = Z̃θ

2. M is D-invariant. ⇔ G̃−1
θ = Zθ ⇔ G−1

θ = Z̃θ

3. M is asymptotically classical. ⇔ G−1
θ = Zθ

Figure 2 gives a schematic diagram summarizing the relations among the matrices
G−1

θ , G̃−1
θ , Zθ , Z̃θ and corresponding model classification. We can classify three models simply by

comparing these four matrices. Proof of this theorem is given in Section 4.3.4.

� -

� -

?

6

?

6
�
�
�
�3

Q
Q
Q
Qs

Q
Q
Q
Qk

�
�
�
�+

G̃−1
θ

G−1
θ

Zθ

Z̃θ

MDMC MC

MC

MAC

Figure 2. A schematic diagram for model classification for three classes: the classical (MC), D-invariant
(MD), and asymptotically classical (MAC) in terms of four matrices G−1

θ , G̃−1
θ , Zθ , Z̃θ . Two arrows in

the opposite direction indicate if two matrices are identical, and the model belongs to a class indicated
between these arrows.

As the corollary, we can characterize models by the properties of two tangent spaces Tθ(M)

and T̃θ(M).

Corollary 1. Given a quantum statistical model, we have the following equivalences.

1. M is classical. ⇔ Dρθ
(Tθ(M))⊥T̃θ(M) with respect to 〈·, ·〉Sρθ

.

⇔ Dρθ
(T̃θ(M))⊥T̃θ(M) with respect to 〈·, ·〉Sρθ

.

⇔ Dρθ
(T̃θ(M))⊥Tθ(M) with respect to 〈·, ·〉Sρθ

.

⇔ Dρθ
(T̃θ(M))⊥T̃θ(M) with respect to 〈·, ·〉Rρθ

.

2. M is D-invariant. ⇔ ∀i, Li
θ − L̃i

θ⊥Dρθ
(Tθ(M)) with respect to 〈·, ·〉Sρθ

.

⇔ ∀i, Li
θ − L̃i

θ⊥Dρθ
(T̃θ(M)) with respect to 〈·, ·〉Sρθ

.
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3. M is asymptotically classical. ⇔ Dρθ
(Tθ(M))⊥Tθ(M) with respect to 〈·, ·〉Sρθ

.

⇔ Dρθ
(Tθ(M))⊥T̃θ(M) with respect to 〈·, ·〉Rρθ

.

⇔ Dρθ
(Tθ(M))⊥Tθ(M) with respect to 〈·, ·〉Rρθ

.

⇔ Dρθ
(T̃θ(M))⊥Tθ(M) with respect to 〈·, ·〉Rρθ

.

Proof of this corollary is immediate from Theorem 2 and use of Lemmas 1, 2, and 6.

4.2. Discussion on the Results

In this subsection, we discuss the geometrical meaning and statistical consequences of the results:
Propositions 1, 2, 3, Theorem 2, and Corollary 1.

4.2.1. Tangent Vector

We first note that Conditions 2 and 3 in Proposition 1 are nothing but the condition in Equation (35)
in Section 4.3. This is straightforward to understand if we regard ∂ρθ/∂θi as an m-representation of
the tangent vector ∂/∂θi and Lθ,i as an e-representation of it with respect to the SLD Fisher metric.
The statement applies for the RLD case.

Next, we can compare Condition 5 in Proposition 1 to the condition for the D-invariant model,
Condition 5 of Proposition 2: Li

θ = L̃i
θ for all i. For the quasi-classical model, we have conditions

of [Lθ,i , Lθ,j] = 0 for all i, j by definition. The asymptotically classical model, on the other hand,
only requires commutativity of the SLD operators on the support ρθ as indicated by Condition 5 in
Proposition 3.

4.2.2. Quantum Fisher Metric

Condition 4 in Proposition 1 states that the SLD and RLD quantum Fisher metrics are identical.
If this is the case, in fact, all possible monotone metric on S(H) are identical. In other words,
they collapse to the single monotone metric. This is because: (1) the imaginary part of the RLD
Fisher metric vanishes; and (2) the SLD Fisher metric is the minimum and the real RLD Fisher metric
is the maximum monotone metric (Petz’s theorem) [14]. Due to Theorem 2, this condition is also
equivalent to G̃−1

θ = Z̃θ and Zθ = Z̃θ .
Next, let us consider the D-invariant model. Condition 4 of Proposition 2 requires that the real

part of the inverse of the RLD Fisher metric is identical to that of the SLD Fisher metric. In addition,
the imaginary part of the inverse of the RLD Fisher metric needs to be the same as that of Zθ matrix.
By Theorem 2, its dualistic condition G−1

θ = Z̃θ is shown to be equivalent.
Last, the asymptotically classical model only requires that the imaginary part of the Zθ matrix

(Condition 3 of Proposition 3). From this fact, we can easily understand the reason the classical model
is equivalent to the D-invariant and asymptotically classical model.

4.2.3. Tangent Space

As the fundamental objects in information geometry, let us analyze the SLD tangent space Tθ(M).
Condition 6 in Proposition 1 means that the SLD tangent space is in the kernel of the commutation
operator Dρθ

, whereas the SLD tangent space is an invariant subspace of the commutation operator
for the D-invariant model. Next, the asymptotically classical model is characterized by the condition
that Dρθ

(Tθ(M)) and Tθ(M) are mutually orthogonal subspaces. In other words, the action of the
commutation operator takes all elements of the SLD tangent space to the outside of this space.

We split the SLD operator into two parts, namely a classical part and a quantum part, where the
latter is defined by the change in a unitary direction. Since the Dρθ

operator maps the commutation
relationship to the anti-commutation relationship as in Equation (12), the quantum part of the SLD
operator is expressed in terms of the commutation operator. With more analysis, we can show that the
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condition for the classical model is equivalent to vanishing of the quantum part of SLD operators (see
also the discussion given in Ch. 7 of the book [2]).

4.2.4. Asymptotic Bound

The last equivalent condition, Condition 8 in Proposition 1, is a rather straightforward
consequence once we combine all ingredients presented in the lemmas and other equivalent conditions
for the classical model. However, the statistical implication of this condition is nontrivial in the
sense that we only consider properties of asymptotically achievable bounds. One is the bound for
the D-invariant model, and the other is the bound for the asymptotically classical model. Another
implication of this equivalence is that there is no genuine quantum statistical model that is both
D-invariant and asymptotically classical. In this sense, these two classes of quantum statistical models,
the D-invariant and asymptotically classical models, are regarded as two extremal and mutually
exclusive models.

4.3. Proofs

As stated bove, all conditions in this section are about all parameter values θ unless otherwise stated.

4.3.1. Proof for Proposition 1

Proof. Equivalence to Conditions 2 and 3:

First, we note that the definition of the classical model is equivalent to the commutativity of ρθ for
all different values θ, that is,

[ρθ , ρθ′ ] = 0 for all θ 6= θ′. (34)

By the standard matrix analysis, this is equivalent to:

∀i, [
∂

∂θi ρθ , ρθ ] = 0. (35)

From the definitions of the SLD and RLD operators, we can show that the condition in
Equation (35) is equivalent to [Lθ,i , ρθ ] = 0 for all i. This is Condition 2. Similarly, Condition (35) can
be converted to [L̃θ,i , ρθ ] = 0 for all i, which is Condition 3.

Equivalence to Conditions 4 and 5:

If the model is classical, the SLD operator Lθ,i commutes with the quantum state. Hence, operator
formulas in Equation (3) defining the SLD and RLD operators are identical. Since the SLD and RLD
operator are uniquely defined, we obtain Lθ,i = L̃θ,i for all i.

Next, assuming Condition 5, matrices G̃θ and Z−1
θ are identical. Noting Re Z−1

θ = Gθ , we get
Condition 4.

Last, suppose Condition 4, Gθ = G̃θ , then, from Lemma 3, this is possible if and only if Im Zθ = 0
and Li

θ = L̃i
θ for all i. Since gθ,ij = g̃θ,ij, the latter condition leads to Lθ,i = L̃θ,i for all i, j.

Equivalence to Conditions 6 and 7:

Condition 6 is to say that the SLD tangent space is in the kernel of the commutation operator.
From definition of the commutation operator and the fact that Xρ + ρX = 0 implies X = 0 if ρ > 0,
we have

kerDρθ
= {X ∈ L(H) | [X, ρθ ] = 0}.

This then immediately establishes equivalence between Conditions 2 and 6. A similar argument
applies for Condition 7.

Equivalence to Condition 8:
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When the model is classical, Conditions 4 and 5 give Li
θ = L̃i

θ for all i (D-invariance). Combining it
with Lθ,i = L̃θ,i leads to Zθ = G−1

θ . Hence, the definitions for D-invariant and asymptotically classical
model are clearly satisfied, if the model is classical. Conversely, suppose that the model is D-invariant,
G̃−1

θ = Zθ , and asymptotically classical, Zθ = G−1
θ . Then, it gives Condition 4, Gθ = G̃θ .

4.3.2. Proof for Proposition 2

Proof. We only need to prove Condition 7 is equivalent to other conditions. When a model is
D-invariant, Li

θ = L̃i
θ and Dρθ

(Lθ,i) ∈ Tθ(M) hold. Hence, it is straightforward to see T̃θ(M) is

an invariant subspace. Next, suppose Dρθ
(L̃θ,i) ∈ T̃θ(M), i.e., ∃ci,j, Dρθ

(L̃θ,i) = ∑j cji L̃
j
θ . This then

yields cji = −i(gij − g̃ij) by taking the inner product with L̃θ,k with respect to the RLD inner product

and the use of Lθ,i − L̃θ,i = iDρθ
(L̃θ,i). This relation is reduced to Lθ,i = ∑j gij L̃

j
θ , which is equivalent to

Li
θ = L̃i

θ .

4.3.3. Proof for Proposition 3

Proof. First: The third condition Im Zθ = 0 implies ∀W > 0, CH
θ [W] = CS

θ [W]. This is because of
CH

θ [W] ≥ CS
θ [W], ∀W > 0 and the direct substitution gives

hθ [~Lθ |W] = CS
θ [W] + Tr

{
|W

1
2 Im ZθW

1
2 |
}
= CS

θ [W].

Here,~Lθ = (L1
θ , L2

θ , . . . , Ln
θ ) ∈ Xθ is the collection of SLD dual operators. This means the set of

SLD dual operators is the optimal achieving the lowest value in the definition of the Holevo bound in
Equation (28).

By definition, the first condition obviously implies the second one: ∃W0 > 0, CH
θ [W0] = CS

θ [W0].
To show that the existence of a weight matrix W0 satisfying CH

θ [W0] = CS
θ [W0] implies the

vanishing of the imaginary part of the matrix Zθ , we prove the contraposition. That is, if Im Zθ 6= 0,
then CH

θ [W] > CS
θ [W] holds for all weight matrices W. Let us use the following substitution for

optimizing the Holevo function:

~X = (L1
θ , L2

θ , . . . , Ln
θ ) + (K1

θ , K2
θ , . . . , Kn

θ ), (36)

where Ki
θ (i = 1, 2, . . . , n) are tangent operators orthogonal to all SLD operators Lθ,i with respect to the

SLD inner product. With this, the Holevo function reads

hθ [~X|W] = CS
θ [W] + Tr {WReKθ}+ Tr

{
|W

1
2 Im (Zθ +Kθ)W

1
2 |
}

, (37)

where n× n matrix Kθ =
[
〈Ki

θ , K j
θ〉

R
ρθ

]
is hermite. We note that the last two terms:

Tr {WReKθ}+Tr
{
|W 1

2 Im (Zθ +Kθ)W
1
2 |
}

is strictly positive since it vanishes if and only if ReKθ = 0
and Im (Zθ +Kθ) = 0 hold. However, these two conditions cannot be satisfied due to the assumption
Zθ 6= 0 and the positivity of the matrix Kθ . Therefore, we show that if Im Zθ 6= 0, we have CH

θ [W] >

CS
θ [W] for all W > 0. Finally, Im Zθ = 0 ⇔ ∀i, j, tr

(
ρθ [Lθ,i, Lθ,j]

)
= 0 can be shown by elementary

algebra. Collecting these arguments proves Proposition 3.

4.3.4. Proof for Theorem 2

Proof. Equivalence in Condition 1:

Since Gθ = G̃θ ⇔ G−1
θ = G̃−1

θ , the first equivalence is immediate.
To prove the second equivalence to G̃−1

θ = Z̃θ in Condition 1, let us assume first that a model is
classical. Condition 7 of Proposition 1 gives

Dρθ
(L̃i

θ) = 0, ∀i. (38)
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Then, Equation (26) of Lemma 6 yields g̃ij
θ − z̃ij

θ = 0 for all i, j. Conversely, if G̃−1
θ = Z̃θ holds, we

have the following equivalence from the first matrix inequality in Lemma 5.

∀i, Lθ,i = L̃θ,i ⇔ Gθ + G̃θ Z̃θG̃θ = 2G̃θ

⇔ Gθ + G̃θG̃−1
θ G̃θ = 2G̃θ

⇔ Gθ = G̃θ .

This proves the converse part.
The last equivalence to Zθ = Z̃θ in Condition 1 is proven as follows. A classical model gives this

condition is straightforward. Conversely, if this condition is satisfied, the second matrix inequality of
Lemma 4 is then expressed as

Zθ ≥ G−1
θ . (39)

Noting G−1
θ = Re Zθ , this inequality concludes Im Zθ = 0. (Otherwise, the matrix inequality

does not hold.) This then shows that the model is asymptotically classical, and we have
G−1

θ = Zθ = Z̃θ . The condition G−1
θ = Z̃θ holds if and only if the model is D-invariant from Lemma 4.

Therefore, the model is asymptotically classical and D-invariant, i.e., the classical model.

Equivalence in Condition 2:

The first equivalence is already proven in Proposition 3, whose proof is given in Ref. [22]. Here,
we note that both conditions can be proven immediately if we use Lemma 4.

Equivalence in Condition 3:

This is proven in Proposition 3.

5. Examples

5.1. Qubit Models

When the dimension of the Hilbert space is two, i.e., a qubit system, we can explicitly work out
classification of models [22]. To analyze a given qubit model, it is convenient to use the Bloch vector
representation of qubit states (see, for example, [15]). Define a three-dimensional real vector sθ = (si

θ)

for i = 1, 2, 3 by
si

θ := tr (ρθσi) , (40)

where σi are the standard Pauli matrices. Since the mapping sθ 7→ ρθ is bijective, a quantum statistical
model for the qubit case can be defined as

M = {sθ ∈ R3 | θ ∈ Θ}. (41)

The positivity condition ρθ > 0 is equivalent to |sθ | < 1. Based on the Bloch vector sθ , we
can derive closed formulas for the quantum score functions (SLD and RLD logarithmic derivative
operators) and the quantum Fisher information matrices (see, for example, [22]) In Ref. [22], we derived
the following conditions for a model of Equation (41) to be the D-invariant and asymptotically classical.

1. M is D-invariant. ⇔ |sθ | is independent of θ.
2. M is asymptotically classical. ⇔ ∂isθ × ∂jsθ (∀i 6= j) is orthogonal to sθ .

The equivalent condition for the D-invariant model immediately tells us that any unitary model on the
qubit system is D-invariant. The converse statement is, of course, not true in general. For example,
the following two-parameter qubit model is D-invariant, but not unitary.

M = {sθ = (θ1, θ2,
√

s2
0 − (θ1)2 − (θ2)2) | θ ∈ Θ}, (42)
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where s0 ∈ (0, 1) is a fixed constant and the parameters takes values within the region Θ ⊂ R2

satisfying the positivity condition for the state.
Next, we can work out whether or not there exists a classical qubit model. It is straightforward to

show that there cannot be any multi-parameter classical qubit model under the regularity condition,
and thus only one-parameter classical model exists. The reason is simply because there can be a single
parameter classical model embedded in a 2× 2 matrix space. Any multi-parameter classical model
becomes a non-regular model.

Finally, we ask if there exists a quasi-classical model in a qubit system. It turns out that there
exists no such a quasi-classical qubit model. This is because imposing commutativity between the SLD
operators leads to a non-regular model.

To prove this statement, we note the commutation condition for the SLD operators is expressed in
terms of the Bloch vectors as

[Lθ,i , Lθ,j] = 0 ⇔ ∂isθ × ∂jsθ = 0. (43)

Consider a two-parameter qubit model. The condition ∂1sθ × ∂2sθ = 0 is equivalent to linearly
dependence of two vectors ∂1sθ , ∂2sθ . This then implies the existence of a function c : Θ→ R such that
Lθ,1 = c(θ)Lθ,2 holds. This contradicts with linearly independence of the tangent vectors. Note that,
if this is the case, the dimension of the tangent space is one rather than two. The case of three-parameter
models can be checked similarly.

5.2. Non-Classical Quasi-Classical Model

As mentioned in Section 3.3, there exists a quantum statistical model that is quasi-classical (all
SLD operators commute with each other) and yet non-classical. It is straightforward to observe that
such cases arise if a model is non-regular. For example, quantum states are not full rank. Below, we
give a simple regular statistical model in a three-dimensional quantum system (d = 3).

We consider the following two-parameter model:

M := {ρθ | θ = (θ1, θ2) ∈ Θ},

where

ρθ := Uθ2 Λθ1U−1
θ2 , (44)

Λθ1 :=

 λ(θ1) 0 0
0 cλ(θ1) 0
0 0 1− (1 + c)λ(θ1)

 , (45)

Uθ2 := eiθ2σ1 with σ1 =

 0 1 0
1 0 0
0 0 0

 , (46)

with the constant c ∈ R (c 6= 1) and smooth function λ(θ1) being chosen arbitrary as long as the
corresponding classical model for Λθ1

M1 := {pθ1 = (λ(θ1), cλ(θ1), 1− (1 + c)λ(θ1))|θ1 ∈ Θ1},
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satisfiesM1 ∈ P(3). The SLD operators are calculated as

Lθ,1 = Uθ2
λ̇

λ

 1 0 0
0 1 0
0 0 −m(θ1)

U−1
θ2 (47)

Lθ,2 = Uθ2 2
1− c
1 + c

 0 −i 0
i 0 0
0 0 0

U−1
θ2 , (48)

where λ̇ = dλ(θ1)/dθ1, m(θ1) = 1− (1− (1 + c)λ(θ1))−1. To have a regular quantum model, we also
impose λ̇ 6= 0 for all θ1. It is clear that two SLD operators commute with each other for all θ. The RLD
operators are

L̃θ,1 = Lθ,1 (49)

L̃θ,2 = Uθ2

 0 −i(1− c) 0
i(1− c)/c 0 0

0 0 0

U−1
θ2 . (50)

We can show that the SLD Fisher information matrix is diagonal and is given by

gθ,11 =
λ̇

λ
(2 + m(θ1)2), (51)

gθ,12 = gθ,21 = 0, (52)

gθ,22 =

(
2

1− c
1 + c

)2
λ(θ1), (53)

whereas the RLD Fisher information matrix is

g̃θ,11 = gθ,11, (54)

g̃θ,12 = g̃θ,21 = 0, (55)

g̃θ,22 =
(1− c)2(1 + c)

c
λ(θ1). (56)

It is easy to see that g̃θ,22 ≥ gθ,22 with equality if and only if c = 1, which is excluded.
Therefore, Gθ 6= G̃θ holds and this model is not classical by Proposition 1.

6. Concluding Remarks

We derive several equivalent characterizations of quantum statistical models based on the
estimation error bound, the Holevo bound, and information geometric properties. This then yields a
simple classification of quantum statistical models by calculating information matrices. Our results
immediately provide practical advantages for classifying important classes of quantum statistical
models in quantum metrology [6–11]. Three classes are mainly discussed in this paper: the classical
model, D-invariant model, and asymptotically classical model. We also give relationships among
these classes. In particular, the classical model can be viewed as the intersection of the D-invariant
and asymptotically classical models. These three models have different interpretations based on the
information geometrical point of view.

Before closing the paper, we list two open questions to be addressed. In this paper, we focus on
the global aspects of the quantum statistical models only. The first extension is then to analyze local
properties of each class of the quantum statistical model. In Ref. [22], we analyzed the local properties
for the D-invariant and asymptotically classical models. Therefore, it is interesting to see whether the
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local classical model is a useful concept or not. Second, we only use two quantum Fisher metrics, the
SLD and RLD Fisher metrics, together with their variants Zθ and Z̃θ . We expect that other families of
quantum Fisher metrics should also give model classification and characterization.
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