# Emergent Quantum Mechanics: David Bohm Centennial Perspectives

^{1}

^{2}

^{3}

^{4}

^{5}

^{*}

## Abstract

**:**

## 1. Quantum Ontology and Foundational Principles

## 2. The Continuing Impact of the Bohmian Theory

## 3. Beyond the Bohmian Theory: New Developments

## 4. Quantum Ontology and Time: Retrocausality and Irreversibility

## 5. Entropy, Thermodynamics, and Emergent Quantum Gravity

## 6. Alternative Quantum Models and Tools

## 7. Advanced Quantum Experimentation

^{3}S

_{1}state…is within the resolution of conventional microchannel plate detectors indicating that this type of experiment is feasible.”

## 8. Outlook

## Acknowledgments

## Conflicts of Interest

## References

- Maudlin, T. Ontological Clarity via Canonical Presentation: Electromagnetism and the Aharonov–Bohm Effect. Entropy
**2018**, 20, 465. [Google Scholar] [CrossRef] - Walleczek, J. Agent Inaccessibility as a Fundamental Principle in Quantum Mechanics: Objective Unpredictability and Formal Uncomputability. Entropy
**2019**, 21, 4. [Google Scholar] [CrossRef] - De Gosson, M.A. The Symplectic Camel and Poincaré Superrecurrence: Open Problems. Entropy
**2018**, 20, 499. [Google Scholar] [CrossRef] - Seager, W. The Philosophical and Scientific Metaphysics of David Bohm. Entropy
**2018**, 20, 493. [Google Scholar] [CrossRef] - Hiley, B.J.; Van Reeth, P. Quantum Trajectories: Real or Surreal? Entropy
**2018**, 20, 353. [Google Scholar] [CrossRef] - Flack, R.; Hiley, B.J. Feynman Paths and Weak Values. Entropy
**2018**, 20, 367. [Google Scholar] [CrossRef] - Gisin, N. Why Bohmian Mechanics? One- and Two-time Position Measurements, Bell Inequalities, Philosophy, and Physics. Entropy
**2018**, 20, 105. [Google Scholar] [CrossRef] - Lazarovici, D.; Oldofredi, A.; Esfeld, M. Observables and Unobservables in Quantum Mechanics: How the No-hidden-variables Theorems Support the Bohmian Particle Ontology. Entropy
**2018**, 20, 381. [Google Scholar] [CrossRef] - Passon, O. On a Common Misconception Regarding the de Broglie–Bohm theory. Entropy
**2018**, 20, 440. [Google Scholar] [CrossRef] - Norsen, T. On the Explanation of Born-rule Statistics in the de Broglie-Bohm Pilot-wave Theory. Entropy
**2018**, 20, 422. [Google Scholar] [CrossRef] - Sanz, Á.S. Atom-Diffraction from Surfaces with Defects: A Fermatian, Newtonian and Bohmian Joint View. Entropy
**2018**, 20, 451. [Google Scholar] [CrossRef] - Tumulka, R. On Bohmian Mechanics, Particle Creation, and Relativistic Space–time: Happy 100th Birthday, David Bohm! Entropy
**2018**, 20, 462. [Google Scholar] [CrossRef] - Grössing, G.; Fussy, S.; Mesa Pascasio, J.; Schwabl, H. Vacuum Landscaping: Cause of Nonlocal Influences Without Signaling. Entropy
**2018**, 20, 458. [Google Scholar] [CrossRef] - Hatifi, M.; Willox, R.; Colin, S.; Durt, T. Bouncing Oil Droplets, de Broglie’s Quantum Thermostat, and Convergence to Equilibrium. Entropy
**2018**, 20, 780. [Google Scholar] [CrossRef] - Ghadimi, M.; Hall, M.J.W.; Wiseman, H.M. Nonlocality in Bell’s theorem, in Bohm’s theory, and in Many Interacting Worlds Theorising. Entropy
**2018**, 20, 567. [Google Scholar] [CrossRef] - Adlam, E.C. Spooky Action at a Temporal Distance. Entropy
**2018**, 20, 41. [Google Scholar] [CrossRef] - Wharton, K. A New Class of Retrocausal Models. Entropy
**2018**, 20, 410. [Google Scholar] [CrossRef] - Argaman, N. A Lenient Causal Arrow of Time? Entropy
**2018**, 20, 294. [Google Scholar] [CrossRef] - Diósi, L. Fundamental Irreversibility: Planckian or Schrödinger–Newton? Entropy
**2018**, 20, 496. [Google Scholar] [CrossRef] - Hsiang, J.-T.; Hu, B.-L. Quantum Thermodynamics at Strong Coupling: Operator Thermodynamic Functions and Relations. Entropy
**2018**, 20, 423. [Google Scholar] [CrossRef] - Civitarese, O.; Gadella, M. The Definition of Entropy for Quantum Unstable Systems: A View-Point Based on the Properties of Gamow States. Entropy
**2018**, 20, 231. [Google Scholar] [CrossRef] - Keppens, A. What Constitutes Emergent Quantum Reality? A Complex System Exploration from Entropic Gravity and the Universal Constants. Entropy
**2018**, 20, 335. [Google Scholar] [CrossRef] - Tessarotto, M.; Cremaschini, C. Generalized Lagrangian Path Approach to Manifestly-Covariant Quantum Gravity Theory. Entropy
**2018**, 20, 205. [Google Scholar] [CrossRef] - Palmer, T.N. Experimental Non-Violation of the Bell Inequality. Entropy
**2018**, 20, 356. [Google Scholar] [CrossRef] - Filk, T. On Ontological Alternatives to Bohmian Mechanics. Entropy
**2018**, 20, 474. [Google Scholar] [CrossRef] - Prodanov, D. Analytical and Numerical Treatments of Conservative Diffusions and the Burgers Equation. Entropy
**2018**, 20, 492. [Google Scholar] [CrossRef] - Kauffman, L.H. Non-Commutative Worlds and Classical Constraints. Entropy
**2018**, 20, 483. [Google Scholar] [CrossRef] - Gambini, R.; Pullin, J. The Montevideo Interpretation of Quantum Mechanics: A Short Review. Entropy
**2018**, 20, 413. [Google Scholar] [CrossRef] - Mairhofer, L.; Eibenberger, S.; Shayeghi, A.; Arndt, M. A Quantum Ruler for Magnetic Deflectometry. Entropy
**2018**, 20, 516. [Google Scholar] [CrossRef] - Vaidman, L.; Tsutsui, I. When Photons Are Lying about Where They Have Been. Entropy
**2018**, 20, 538. [Google Scholar] [CrossRef] - Flack, R.; Monachello, V.; Hiley, B.; Barker, P. A Method for Measuring the Weak Value of Spin for Metastable Atoms. Entropy
**2018**, 20, 566. [Google Scholar] [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Walleczek, J.; Grössing, G.; Pylkkänen, P.; Hiley, B.
Emergent Quantum Mechanics: David Bohm Centennial Perspectives. *Entropy* **2019**, *21*, 113.
https://doi.org/10.3390/e21020113

**AMA Style**

Walleczek J, Grössing G, Pylkkänen P, Hiley B.
Emergent Quantum Mechanics: David Bohm Centennial Perspectives. *Entropy*. 2019; 21(2):113.
https://doi.org/10.3390/e21020113

**Chicago/Turabian Style**

Walleczek, Jan, Gerhard Grössing, Paavo Pylkkänen, and Basil Hiley.
2019. "Emergent Quantum Mechanics: David Bohm Centennial Perspectives" *Entropy* 21, no. 2: 113.
https://doi.org/10.3390/e21020113