# Information Flow between Bitcoin and Other Investment Assets

^{1}

^{2}

^{3}

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

#### 2.1. Data

#### 2.2. Granger Causality

#### 2.3. Transfer Entropy

## 3. Results

#### 3.1. Granger Causality Test

#### 3.2. Normality Test

#### 3.3. Transfer Entropy

## 4. Discussion

## 5. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Böhme, R.; Christin, N.; Edelman, B.; Moore, T. Bitcoin: Economics, technology, and governance. J. Econ. Perspect.
**2015**, 29, 213–238. [Google Scholar] [CrossRef] - Kim, T. On the transaction cost of Bitcoin. Financ. Res. Lett.
**2017**, 23, 300–305. [Google Scholar] [CrossRef] - Chu, J.; Chan, S.; Nadarajah, S.; Osterrieder, J. GARCH modelling of cryptocurrencies. J. Risk Financ. Manag.
**2017**, 10, 17. [Google Scholar] [CrossRef] - Guesmi, K.; Saadi, S.; Abid, I.; Ftiti, Z. Portfolio diversification with virtual currency: Evidence from bitcoin. Int. Rev. Financ. Anal.
**2019**, 63, 431–437. [Google Scholar] [CrossRef] - Baur, D.G.; Dimpfl, T.; Kuck, K. Bitcoin, gold and the US dollar–A replication and extension. Financ. Res. Lett.
**2018**, 25, 103–110. [Google Scholar] [CrossRef] - Klein, T.; Thu, H.P.; Walther, T. Bitcoin is not the new gold–A comparison of volatility, correlation, and portfolio performance. Int. Rev. Financ. Anal.
**2018**, 59, 105–116. [Google Scholar] [CrossRef] - Yermack, D. Is Bitcoin a Real Currency? An Economic Appraisal. In Handbook of Digital Currency; Lee, K.C.D., Ed.; Academic Press: Cambridge, MA, USA, 2015; pp. 31–43. [Google Scholar]
- Erdas, M.L.; Caglar, A.E. Analysis of the relationships between Bitcoin and exchange rate, commodities and global indexes by asymmetric causality test. East. J. Eur. Stud.
**2018**, 9, 27–45. [Google Scholar] - Corelli, A. Cryptocurrencies and exchange rates: A relationship and causality analysis. Risks
**2018**, 6, 111. [Google Scholar] [CrossRef] - Corbet, S.; Meegan, A.; Larkin, C.; Lucey, B.; Yarovaya, L. Exploring the dynamic relationships between cryptocurrencies and other financial assets. Econ. Lett.
**2018**, 165, 28–34. [Google Scholar] [CrossRef] - Drożdż, S.; Minati, L.; Oświęcimka, P.; Stanuszek, M.; Wątorek, M. Signatures of the cryptocurrency market decoupling from the Forex. Future Internet
**2019**, 11, 154. [Google Scholar] [CrossRef] - Chakravarty, S.; Gulen, H.; Mayhew, S. Informed trading in stock and option markets. J. Financ.
**2004**, 59, 1235–1257. [Google Scholar] [CrossRef] - Chen, W.P.; Chung, H. Has the introduction of S&P 500 ETF options led to improvements in price discovery of SPDRs? J. Futures Mark.
**2012**, 32, 683–711. [Google Scholar] [CrossRef] - Ahn, K.; Bi, Y.; Sohn, S. Price discovery among SSE 50 Index-based spot, futures, and options markets. J. Futures Mark.
**2019**, 39, 238–259. [Google Scholar] [CrossRef] - Kristoufek, L. What are the main drivers of the Bitcoin price? Evidence from wavelet coherence analysis. PloS ONE
**2015**, 10, 3923. [Google Scholar] [CrossRef] - Bakshi, G.; Kapadia, N.; Madan, D. Stock return characteristics, skewness law, and the differential pricing of individual equity option. Rev. Financ. Stud.
**2003**, 16, 101–143. [Google Scholar] [CrossRef] - Wiener, N. The theory of prediction. In Modern Mathematics for the Engineer, 1st ed.; Beckenbach, E.F., Ed.; McGraw-Hill: New York, NY, USA, 1956; Volume 1, pp. 165–190. [Google Scholar]
- Granger, C.W. Investigating causal relations by econometric models and cross-spectral methods. Econom. J. Econom. Soc.
**1969**, 37, 424–438. [Google Scholar] [CrossRef] - Akaike, H. Fitting autoregressive models for prediction. Ann. Inst. Stat. Math.
**1969**, 21, 243–247. [Google Scholar] [CrossRef] - Hannan, E.J.; Quinn, B.G. The determination of the order of an autoregression. J. R. Stat. Soc. Ser. B
**1979**, 41, 190–195. [Google Scholar] [CrossRef] - Burnham, K.P.; Anderson, D.R. Multimodel inference: Understanding AIC and BIC in model selection. Sociol. Methods Res.
**2004**, 33, 261–304. [Google Scholar] [CrossRef] - Schreiber, T. Measuring information transfer. Phys. Rev. Lett.
**2000**, 85, 461–464. [Google Scholar] [CrossRef] - Larson, H.J. Introduction to Probability Theory and Statistical Inference, 2nd ed.; John Wiley and Sons: New York, NY, USA, 1974. [Google Scholar]
- Scott, D.W. On optimal and data-based histograms. Biometrika
**1979**, 66, 605–610. [Google Scholar] [CrossRef] - Freedman, D.; Diaconis, P. On the histogram as a density estimator: L
_{2}theory. Probab. Theory Relat. Fields**1981**, 57, 453–476. [Google Scholar] [CrossRef] - Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J.
**1948**, 27, 379–423. [Google Scholar] [CrossRef] - Ruiz, M.D.C.; Guillamón, A.; Gabaldón, A. A new approach to measure volatility in energy markets. Entropy
**2012**, 14, 74–91. [Google Scholar] [CrossRef] - Ahn, K.; Lee, D.; Sohn, S.; Yang, B. Stock market uncertainty and economic fundamentals: An entropy-based approach. Quant. Financ.
**2019**, 19, 1151–1163. [Google Scholar] [CrossRef] - Liang, X. The Liang-Kleeman information flow: Theory and applications. Entropy
**2013**, 15, 327–360. [Google Scholar] [CrossRef] - Marschinski, R.; Kantz, H. Analysing the information flow between financial time series. Eur. Phys. J. B
**2002**, 30, 275–281. [Google Scholar] [CrossRef] - Dimpfl, T.; Peter, F.J. Using transfer entropy to measure information flows between financial markets. Stud. Nonlinear Dyn. Econom.
**2013**, 17, 85–102. [Google Scholar] [CrossRef] - Sandoval, L., Jr. Structure of a global network of financial companies based on transfer entropy. Entropy
**2014**, 16, 4443–4482. [Google Scholar] [CrossRef] - Risso, W.A. Chapter 8: Symbolic Time Series Analysis and its Application in Social Sciences. In Time Series Analysis and Applications; Mohamudally, N., Ed.; InTech: Croatia, Balkans, 2018; pp. 107–125. [Google Scholar] [CrossRef]
- Horowitz, J.L. Bootstrap methods for Markov processes. Econometrica
**2003**, 71, 1049–1082. [Google Scholar] [CrossRef] - Zhang, Y.J.; Wei, Y.M. The crude oil market and the gold market: Evidence for cointegration, causality and price discovery. Resour. Policy
**2010**, 35, 168–177. [Google Scholar] [CrossRef] - Ajayi, R.A.; Friedman, J.; Mehdian, S.M. On the relationship between stock returns and exchange rates: Tests of Granger causality. Glob. Financ. J.
**1998**, 9, 241–251. [Google Scholar] [CrossRef] - Rehman, M.U.; Apergis, N. Determining the predictive power between cryptocurrencies and real time commodity futures: Evidence from quantile causality tests. Resour. Policy
**2019**, 61, 603–616. [Google Scholar] [CrossRef] - Gencaga, D.; Knuth, K.H.; Rossow, W.B. A recipe for the estimation of information flow in a dynamical system. Entropy
**2015**, 17, 438–470. [Google Scholar] [CrossRef] [Green Version] - Razak, F.A.; Jensen, H.J. Quantifying ‘causality’ in complex systems: Understanding transfer entropy. PLoS ONE
**2014**, 9, 9462. [Google Scholar] [CrossRef] [Green Version] - Staniek, M.; Lehnertz, K. Symbolic Transfer Entropy. Phys. Rev. Lett.
**2008**, 100, 8101. [Google Scholar] [CrossRef] - Mantegna, R.N.; Stanley, H.E. An Introduction to Econophysics: Correlations and Complexity in Finance, 1st ed.; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Kwon, O.; Yang, J.S. Information flow between stock indices. Europhys. Lett.
**2008**, 82, 8003. [Google Scholar] [CrossRef] [Green Version] - Pele, D.T.; Mazurencu-Marinescu-Pele, M. Using high-frequency entropy to forecast Bitcoin’s daily Value at Risk. Entropy
**2019**, 21, 102. [Google Scholar] [CrossRef] [Green Version] - Drożdż, S.; Gȩbarowski, R.; Minati, L.; Oświȩcimka, P.; Wa̧torek, M. Bitcoin market route to maturity? Evidence from return fluctuations, temporal correlations and multiscaling effects. Chaos
**2018**, 28, 6517. [Google Scholar] [CrossRef]

**Figure 1.**(

**a**) Transfer entropy by histogram analysis; and (

**b**) Transfer entropy by STSA ($S=5$). We display the information flow between the assets. The arrow represents the causal link, and the number indicates the estimated value of transfer entropy (the value of effective transfer entropy is also denoted in parentheses). The arrows are colored differently for each value and statistical significance. The significance level was evaluated by bootstrapping the underlying Markov process [31,34]. * and *** indicate the significance at the 10% and 1% levels, respectively.

Min. | Max. | Mean | Std. | Skewness | Kurtosis | |
---|---|---|---|---|---|---|

Bitcoin | $-0.27$ | $0.25$ | $8.96\times {10}^{-4}$ | $3.85\times {10}^{-2}$ | $-0.24$ | $6.25$ |

S&P 500 | $-0.04$ | $0.05$ | $2.50\times {10}^{-4}$ | $8.35\times {10}^{-3}$ | $-0.50$ | $3.79$ |

Gold | $-0.03$ | $0.04$ | $5.66\times {10}^{-5}$ | $8.75\times {10}^{-3}$ | $0.15$ | $1.83$ |

USD/EUR | $-0.03$ | $0.03$ | $-1.35\times {10}^{-4}$ | $5.33\times {10}^{-3}$ | $0.11$ | $2.52$ |

Null Hypothesis (H_{0}) | F-Statistics (p = 1) |
---|---|

Gold ↛ Bitcoin Bitcoin ↛ Gold | 0.04 2.83 * |

S&P 500 ↛ Bitcoin Bitcoin ↛ S&P 500 | 2.88 * 3.24 * |

USD/EUR ↛ Bitcoin Bitcoin ↛ USD/EUR | 0.84 0.08 |

**Table 3.**Jarque–Bera, skewness, and kurtosis tests on the residuals of the bivariate VAR($p$) model.

${\mathit{H}}_{0}:\mathbf{Residuals}\mathbf{Are}\mathbf{Normally}\mathbf{Distributed}$ | |||
---|---|---|---|

Jarque–Bera | Skewness | Kurtosis | |

${M}_{B,G}$ | $2.49\times {10}^{3}$ *** | $7.43$ * | $2.48\times {10}^{3}$ *** |

${M}_{B,S}$ | $2.81\times {10}^{3}$ *** | $44.19$ *** | $2.77\times {10}^{3}$ *** |

${M}_{B,U}$ | $2.64\times {10}^{3}$ *** | $2.96$ | $2.64\times {10}^{3}$ *** |

^{2}statistics. * and *** indicate significance at the 10% and 1% levels, respectively. ${M}_{X,Y}$ is the residuals of the bivariate VAR($p$) model between the two asset returns, such as $X$ and $Y$, where $B$, $G$, $S$, and $U$ represent Bitcoin, gold, S&P 500, and USD/EUR, respectively.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Jang, S.M.; Yi, E.; Kim, W.C.; Ahn, K.
Information Flow between Bitcoin and Other Investment Assets. *Entropy* **2019**, *21*, 1116.
https://doi.org/10.3390/e21111116

**AMA Style**

Jang SM, Yi E, Kim WC, Ahn K.
Information Flow between Bitcoin and Other Investment Assets. *Entropy*. 2019; 21(11):1116.
https://doi.org/10.3390/e21111116

**Chicago/Turabian Style**

Jang, Sung Min, Eojin Yi, Woo Chang Kim, and Kwangwon Ahn.
2019. "Information Flow between Bitcoin and Other Investment Assets" *Entropy* 21, no. 11: 1116.
https://doi.org/10.3390/e21111116