Quantum Games with Unawareness with Duopoly Problems in View
Abstract
:1. Introduction
2. Preliminaries
2.1. Normal form Games with Unawareness
- 1.
- For every ,
- 2.
- For every ,
- 3.
- If , then
2.2. Extended Nash Equilibrium
- 1.
- σ is rationalizable for G if and only if is part of an extended rationalizable profile in .
- 2.
- σ is a Nash equilibrium for G if and only if is part of on an extended Nash equilibrium for and this ENE satisfies .
3. Quantum Cournot’s Duopoly
3.1. Classical Case
- the set of players is ,
- the strategy set of player i is ,
- player i’s payoff function is given by formula
3.2. Quantum Case
4. Quantum Cournot Duopoly with Unawareness
5. General Framework
6. Bertrand Price Competition
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Eisert, J.; Wilkens, M.; Lewenstein, M. Quantum games and quantum strategies. Phys. Rev. Lett. 1999, 83, 3077–3080. [Google Scholar] [CrossRef]
- Yu, T.; Ben-Av, R. Evolutionarily stable sets in quantum penny flip games. Quantum. Inf. Process 2013, 12, 2143. [Google Scholar] [CrossRef]
- Nawaz, A.; Toor, A.H. Evolutionarily stable strategies in quantum HawkDove game. Chin. Phys. Lett. 2010, 27, 5. [Google Scholar] [CrossRef]
- Iqbal, A.; Toor, A.H. Evolutionarily stable strategies in quantum games. Phys. Lett. A 2001, 280, 249. [Google Scholar] [CrossRef]
- Pykacz, J.; Fra̧ckiewicz, P. Arbiter as a third man in classical and quantum games. Int. J. Theor. Phys. 2010, 49, 3243. [Google Scholar] [CrossRef]
- Meyer, D.A. Quantum strategies. Phys. Rev. Lett. 1999, 82, 1052. [Google Scholar] [CrossRef]
- Fra̧ckiewicz, P. Quantum information approach to normal representation of extensive games. Int. J. Quantum Inf. 2012, 10, 1250048. [Google Scholar] [CrossRef]
- Fra̧ckiewicz, P.; Sładkowski, J. Quantum information approach to the ultimatum game. Int. J. Theor. Phys. 2014, 53, 3248. [Google Scholar] [CrossRef]
- La Mura, P. Correlated equilibria of classical strategic games with quantum signals. Int. J. Quantum Inf. 2005, 3, 183. [Google Scholar] [CrossRef]
- Wei, Z.; Zhang, S. Full characterization of quantum correlated equilibria. Quantum Inf. Comput. 2013, 13, 846. [Google Scholar]
- Fra̧ckiewicz, P. On quantum game approach to correlated equilibrium. In Proceedings of the 4th Global Virtual Conference, Žilina, Slovakia, 18–22 April 2016. [Google Scholar] [CrossRef]
- Iqbal, A.; Toor, A.H. Quantum repeated games. Phys. Lett. A 2002, 300, 541. [Google Scholar] [CrossRef]
- Fra̧ckiewicz, P. Quantum repeated games revisited. J. Phys. A Math. Theor. 2012, 45, 085307. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, A.; Toor, A.H. Quantum cooperative games. Phys. Lett. A 2002, 293, 103. [Google Scholar] [CrossRef]
- Liao, X.P.; Ding, X.Z.; Fang, M.F. Improving the payoffs of cooperators in three-player cooperative game using weak measurements. Quantum Inf. Process 2015, 14, 4395. [Google Scholar] [CrossRef]
- Fra̧ckiewicz, P. Quantum games with unawareness. Entropy 2018, 20, 555. [Google Scholar] [CrossRef]
- Fra̧ckiewicz, P. Quantum Penny Flip game with unawareness. Quantum Inf. Process 2019, 18, 15. [Google Scholar] [CrossRef]
- Fra̧ckiewicz, P. Remarks on quantum duopoly schemes. Quantum Inf. Process 2016, 15, 121. [Google Scholar] [CrossRef]
- Fra̧ckiewicz, P.; Sladkowski, J. Quantum approach to Bertrand duopoly. Quantum Inf. Process 2016, 15, 3637. [Google Scholar] [CrossRef]
- Feinberg, Y. Games with Unawareness; Working Paper No. 2122; Stanford Graduate School of Business: Stanford, CA, USA, 2012. [Google Scholar]
- Li, H.; Du, J.; Massar, S. Continuous-variable quantum games. Phys. Lett. A 2002, 306, 73–78. [Google Scholar] [CrossRef] [Green Version]
- Nash, J. Non-cooperative games. Ann. Math. 1951, 54, 286. [Google Scholar] [CrossRef]
- Cournot, A. Recherches sur les Principes Mathématiques de la Théorie des Richesses; Hachette: Paris, France, 1838. [Google Scholar]
- Fra̧ckiewicz, P. Quantum approach to Cournot-type competition. Int. J. Theor. Phys. 2018, 57, 353. [Google Scholar] [CrossRef]
- Bertrand, J. Théorie mathématique de la richesse sociale. Journal des Savants 1883, 67, 499–508. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frąckiewicz, P.; Bilski, J. Quantum Games with Unawareness with Duopoly Problems in View. Entropy 2019, 21, 1097. https://doi.org/10.3390/e21111097
Frąckiewicz P, Bilski J. Quantum Games with Unawareness with Duopoly Problems in View. Entropy. 2019; 21(11):1097. https://doi.org/10.3390/e21111097
Chicago/Turabian StyleFrąckiewicz, Piotr, and Jakub Bilski. 2019. "Quantum Games with Unawareness with Duopoly Problems in View" Entropy 21, no. 11: 1097. https://doi.org/10.3390/e21111097
APA StyleFrąckiewicz, P., & Bilski, J. (2019). Quantum Games with Unawareness with Duopoly Problems in View. Entropy, 21(11), 1097. https://doi.org/10.3390/e21111097