# On the Definition of Energy Flux in One-Dimensional Chains of Particles

## Abstract

**:**

## 1. Introduction

## 2. Definition of the Flux—An Overview

## 3. The Local Energy Flux Redefining the Energy Density

## 4. Local Energy Flux: Changing the Domain of Integration

## 5. Local Energy Flux: Shifting the Location of the Energy

## 6. Relation to Other Approaches

## 7. One Possible Attempt at a Resolution

## 8. Proposition for a Novel Definition

## 9. Conclusions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Fermi, E.; Pasta, J.; Ulam, S. Studies of Nonlinear Problems; Technical Report Number LA-1940; Los Alamos Scientific Laboratory of the University of California: Los Alamos, NM, USA, May 1955. [Google Scholar] [CrossRef]
- Chirikov, B.V.; Izrailev, F.M. Statistical properties of a non-linear string. Dokl. Akad. Nauk SSSR
**1966**, 11, 30–33. [Google Scholar] - Flaschka, H. The Toda lattice. II. Existence of integrals. Phys. Rev. B
**1974**, 9, 1924–1925. [Google Scholar] [CrossRef] - Fucito, F.; Marchesoni, F.; Marinari, E.; Parisi, G.; Peliti, L.; Ruffo, S.; Vulpiani, A. Approach to equilibrium in a chain of non-linear oscillators. J. Phys.
**1982**, 43, 707–713. [Google Scholar] [CrossRef] - Deluca, J.; Lichtenberg, A.; Ruffo, S. Energy transitions and time scales to equipartition in the Fermi-Pasta-Ulam oscillator chain. Phys. Rev. E
**1995**, 51, 2877–2885. [Google Scholar] [CrossRef] [PubMed] - Livi, R.; Pettini, M.; Ruffo, S.; Sparpaglione, M.; Vulpiani, A. Relaxation to different stationary states in the Fermi-Pasta-Ulam model. Phys. Rev. A
**1983**, 28, 3544–3552. [Google Scholar] [CrossRef] - Livi, R.; Pettini, M.; Ruffo, S.; Sparpaglione, M.; Vulpiani, A. Equipartition threshold in nonlinear large Hamiltonian-systems: The Fermi-Pasta-Ulam model. Phys. Rev. E
**1985**, 31, 1039–1045. [Google Scholar] [CrossRef] [PubMed] - Bambusi, D.; Ponno, A. On metastability in FPU. Commun. Math. Phys.
**2006**, 264, 539–561. [Google Scholar] [CrossRef] - Benettin, G.; Christodoulidi, H.; Ponno, A. The Fermi-Pasta-Ulam problem and its underlying integrable dynamics. J. Stat. Phys.
**2013**, 152, 195–212. [Google Scholar] [CrossRef] - Berman, G.P.; Izrailev, F.M. The Fermi-Pasta-Ulam problem: Fifty years of progress. Chaos
**2005**, 15, 015104. [Google Scholar] [CrossRef] - De Gregorio, P.; Rondoni, L.; Bonaldi, M.; Conti, L. One-dimensional models and thermomechanical properties of solids. Phys. Rev. B
**2011**, 84, 224103. [Google Scholar] [CrossRef] - Belousov, R.; De Gregorio, P.; Rondoni, L.; Conti, L. Statistical distribution of bonding distances in a unidimensional solid. Physica A
**2014**, 412, 19–31. [Google Scholar] [CrossRef] [Green Version] - Di Cintio, P.; Iubini, S.; Lepri, S.; Livi, R. Equilibrium time-correlation functions of the long-range interacting Fermi-Pasta-Ulam model. J. Phys. A Math. Gen.
**2019**, 52, 274001. [Google Scholar] [CrossRef] - Rieder, Z.; Lebowitz, J.L.; Lieb, E. Properties of a Harmonic crystal in a Stationary Nonequilibrium state. J. Math. Phys.
**1967**, 8, 1073–1078. [Google Scholar] [CrossRef] - Spohn, H.; Lebowitz, J.L. Stationary nonequilibrium states of infinite harmonic systems. Comm. Math. Phys.
**1977**, 54, 97–120. [Google Scholar] [CrossRef] - Eckmann, J.-P.; Pillet, C.-A.; Rey-Bellet, L. Non-equilibrium statistical mechanics of anharmonic chains coupled to two heat baths at different temperatures. Commun. Math. Phys.
**1999**, 201, 657–697. [Google Scholar] [CrossRef] - Conti, L.; De Gregorio, P.; Karapetyan, G.; Lazzaro, C.; Pegoraro, M.; Bonaldi, M.; Rondoni, L. Effects of breaking vibrational energy equipartition on measurements of temperature in macroscopic oscillators subject to heat flux. J. Stat. Mech. Theory E.
**2013**, P12003. [Google Scholar] [CrossRef] - Giberti, C.; Rondoni, L.; Vernia, C. Temperature and correlations in 1-dimensional systems. Eur. Phys. J. Spec. Top.
**2019**, 228, 129–142. [Google Scholar] [CrossRef] [Green Version] - Falasco, G.; Baiesi, M. Nonequilibrium temperature response for stochastic overdamped systems. New J. Phys.
**2016**, 18, 043039. [Google Scholar] [CrossRef] [Green Version] - D’Ambrosio, F.; Baiesi, M. Equilibrium time-correlation functions of the long-range interacting Fermi-Pasta-Ulam model. Eur. Phys. J. B
**2017**, 90, 235. [Google Scholar] [CrossRef] - Lepri, S.; Livi, R.; Politi, A. Heat conduction in chains of nonlinear oscillators. Phys. Rev. Lett.
**1997**, 78, 1896–1899. [Google Scholar] [CrossRef] - Lepri, S.; Livi, R.; Politi, A. Studies of thermal conductivity in Fermi-Pasta-Ulam-like lattices. Chaos
**2005**, 15, 015118. [Google Scholar] [CrossRef] [PubMed] - Delfini, L.; Lepri, S.; Livi, R.; Politi, A. Nonequilibrium invariant measure under heat flow. Phys. Rev. Lett.
**2008**, 101, 120604. [Google Scholar] [CrossRef] [PubMed] - Lepri, S.; Mejía-Monasterio, C.; Politi, A. A stochastic model of anomalous heat transport: Analytical solution of the steady state. J. Phys. A Math. Gen.
**2009**, 42, 025001. [Google Scholar] [CrossRef] - Hu, B.; Li, B.; Zhao, H. Heat conduction in one-dimensional nonintegrable systems. Phys. Rev. E
**2000**, 61, 3828–3831. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Narayan, O.; Ramaswamy, S. Anomalous heat conduction in one-dimensional momentum-conserving systems. Phys. Rev. Lett.
**2002**, 89, 200601. [Google Scholar] [CrossRef] [PubMed] - Mai, T.; Dhar, A.; Narayan, O. Equilibration and universal heat conduction in Fermi-Pasta-Ulam chains. Phys. Rev. Lett.
**2007**, 98, 184301. [Google Scholar] [CrossRef] - Roy, D.; Dhar, A. Heat transport in ordered harmonic lattices. J. Stat. Phys.
**2008**, 131, 535–541. [Google Scholar] [CrossRef] - Dhar, A.; Narayan, O. Heat conduction in a one-dimensional gas of elastically colliding particles of unequal masses. Phys. Rev. Lett.
**2001**, 86, 3554–3557. [Google Scholar] [CrossRef] - Miller, B.N.; Larson, P.M. Heat flow in a linear harmonic chain: An information-theoretic approach to the nonequilibrium stationary state. Phys. Rev. A
**1979**, 20, 1717–1727. [Google Scholar] [CrossRef] - Casas-Vázquez, J.; Jou, D. Nonequilibrium temperature versus local-equilibrium temperature. Phys. Rev. E
**1994**, 49, 1040–1048. [Google Scholar] [CrossRef] - Lepri, S.; Livi, R.; Politi, A. Energy transport in anharmonic lattices close to and far from equilibrium. Physica D
**1998**, 119, 140–147. [Google Scholar] [CrossRef] [Green Version] - Lepri, S.; Livi, R.; Politi, A. Thermal conduction in classical low-dimensional lattices. Phys. Rep.
**2003**, 377, 1–80. [Google Scholar] [CrossRef] [Green Version] - Dhar, A. Heat transport in low-dimensional systems. Adv. Phys.
**2008**, 57, 457–537. [Google Scholar] [CrossRef] [Green Version] - Giberti, C.; Rondoni, L.; Vernia, C. O(N) fluctuations and lattice distortions in 1-dimensional systems. arXiv
**2017**, arXiv:1706.02886. [Google Scholar] - Giberti, C.; Rondoni, L. Anomalies and absence of local equilibrium, and universality, in one-dimensional particles systems. Phys. Rev. E
**2011**, 83, 041115. [Google Scholar] [CrossRef] [Green Version] - Delfini, L.; Denisov, S.; Lepri, S.; Livi, R.; Mohanty, P.K.; Politi, A. Energy diffusion in hard-point systems. Eur. Phys. J. Spec. Top.
**2007**, 146, 21–35. [Google Scholar] [CrossRef] [Green Version]

© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

De Gregorio, P.
On the Definition of Energy Flux in One-Dimensional Chains of Particles. *Entropy* **2019**, *21*, 1036.
https://doi.org/10.3390/e21111036

**AMA Style**

De Gregorio P.
On the Definition of Energy Flux in One-Dimensional Chains of Particles. *Entropy*. 2019; 21(11):1036.
https://doi.org/10.3390/e21111036

**Chicago/Turabian Style**

De Gregorio, Paolo.
2019. "On the Definition of Energy Flux in One-Dimensional Chains of Particles" *Entropy* 21, no. 11: 1036.
https://doi.org/10.3390/e21111036