## 1. Introduction

## 2. Fundamental Solution to the Time-Space-Fractional PDE

## 3. The Entropy Production Rates of the Fractional Diffusion Processes

## 4. Conclusions

## Funding

## Conflicts of Interest

## References

- Klages, R.; Radons, G.; Sokolov, I.M. Anomalous Transport: Foundations and Applications; Wiley-VCH: Hoboken, NJ, USA, 2008. [Google Scholar]
- Luchko, Y. Anomalous Diffusion: Models, Their Analysis, and Interpretation. In Advances in Applied Analysis; Rogosin, S.V., Koroleva, A.A., Eds.; Birkhäuser: Basel, Switzerland, 2012; pp. 115–146. [Google Scholar]
- Metzler, R.; Klafter, J. The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics. Phys. A Math. Gen.
**2004**, 37, R161–R208. [Google Scholar] [CrossRef] - Metzler, R.; Jeon, J.-H.; Cherstvy, A.G.; Barkai, E. Anomalous diffusion models and their properties: Non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking. Phys. Chem. Chem. Phys.
**2014**, 16, 24128–24164. [Google Scholar] [CrossRef] [PubMed] - Schneider, W.R.; Wyss, W. Fractional diffusion and wave equations. J. Math. Phys.
**1989**, 30, 134–144. [Google Scholar] [CrossRef] - Kemppainen, J. Positivity of the fundamental solution for fractional diffusion and wave equations. arXiv
**2019**, arXiv:1906.04779v1. Available online: https://arxiv.org/abs/1906.04779 (accessed on 30 August 2019). - Luchko, Y. Multi-dimensional fractional wave equation and some properties of its fundamental solution. CAIM
**2014**, 6, e-485. [Google Scholar] [CrossRef] - Luchko, Y.; Mainardi, F. Fractional diffusion-wave phenomena. In Handbook of Fractional Calculus with Applications; Walter de Gruyter: Berlin/Boston, Germany, 2019; Volume 5, pp. 71–98. [Google Scholar]
- Mainardi, F.; Luchko, Y.; Pagnini, G. The fundamental solution of the space-time fractional diffusion equation. Fract. Calc. Appl. Anal.
**2001**, 4, 153–192. [Google Scholar] - Hoffmann, K.H.; Essex, C.; Schulzky, C. Fractional diffusion and entropy production. J. Non-Equilib. Thermodyn.
**1998**, 23, 166–175. [Google Scholar] [CrossRef] - Li, X.; Essex, C.; Davison, M.; Hoffmann, K.H.; Schulzky, C. Fractional diffusion, irreversibility and entropy. J. Non-Equilib. Thermodyn.
**2003**, 28, 279–291. [Google Scholar] [CrossRef] - Hoffmann, K.H.; Kulmus, K.; Essex, C.; Prehl, J. Between Waves and Diffusion: Paradoxical Entropy Production in an Exceptional Regime. Entropy
**2018**, 20, 881. [Google Scholar] [CrossRef] - Prehl, J.; Essex, C.; Hoffmann, K.H. The superdiffusion entropy production paradox in the space-fractional case for extended entropies. Phyica A
**2010**, 389, 214–224. [Google Scholar] [CrossRef] - Prehl, J.; Boldt, F.; Hoffmann, K.H.; Essex, C. Symmetric Fractional Diffusion and Entropy Production. Entropy
**2016**, 18, 275. [Google Scholar] [CrossRef] - Luchko, Y. Wave-diffusion dualism of the neutral-fractional processes. J. Comput. Phys.
**2015**, 293, 40–52. [Google Scholar] [CrossRef] - Luchko, Y. Entropy Production Rate of a One-Dimensional Alpha-Fractional Diffusion Process. Axioms
**2016**, 5, 6. [Google Scholar] [CrossRef] - Luchko, Y. A new fractional calculus model for the two-dimensional anomalous diffusion and its analysis. Math. Model. Nat. Phenom.
**2016**, 11, 1–17. [Google Scholar] [CrossRef] - Boyadjiev, L.; Luchko, Y. Multi-dimensional α-fractional diffusion-wave equation and some properties of its fundamental solution. Comput. Math. Appl.
**2017**, 73, 2561–2572. [Google Scholar] [CrossRef] - Boyadjiev, L.; Luchko, Y. Mellin integral transform approach to analyze the multidimensional diffusion-wave equations. Chaos Solitons Fract.
**2017**, 102, 127–134. [Google Scholar] [CrossRef] - Kemppainen, J.; Siljander, J.; Zacher, R. Representation of solutions and large-time behavior for fully nonlocal diffusion equations. J. Differ. Equ.
**2017**, 263, 149–201. [Google Scholar] [CrossRef] - Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications; Gordon and Breach: New York, NY, USA, 1993. [Google Scholar]
- Saichev, A.; Zaslavsky, G. Fractional kinetic equations: Solutions and applications. Chaos
**1997**, 7, 753–764. [Google Scholar] [CrossRef] - Luchko, Y. Operational method in fractional calculus. Fract. Calc. Appl. Anal.
**1999**, 2, 463–489. [Google Scholar] - Erdélyi, A. Higher Transcendental Functions; McGraw-Hill: New York, NY, USA, 1955; Volume 3. [Google Scholar]
- Marichev, O.I. Handbook of Integral Transforms of Higher Transcendental Functions, Theory and Algorithmic Tables; Ellis Horwood: Chichester, UK, 1983. [Google Scholar]
- Luchko, Y.; Kiryakova, V. The Mellin integral transform in fractional calculus. Fract. Calc. Appl. Anal.
**2013**, 16, 405–430. [Google Scholar] [CrossRef] - Buckwar, E.; Luchko, Y. Invariance of a partial differential equation of fractional order under the Lie group of scaling transformations. J. Math. Anal. Appl.
**1998**, 227, 81–97. [Google Scholar] [CrossRef] - Luchko, Y.; Gorenflo, R. Scale-invariant solutions of a partial differential equation of fractional order. Fract. Calc. Appl. Anal.
**1998**, 1, 63–78. [Google Scholar] - Gazizov, R.K.; Kasatkin, A.A.; Lukashchuk, S.Y. Symmetries, conservation laws and group invariant solutions of fractional PDEs. In Handbook of Fractional Calculus with Applications; De Gruyter: Berlin, Germany, 2019; Volume 2, pp. 353–382. [Google Scholar]

© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).