The Effects of Mo and Nb on the Microstructures and Properties of CrFeCoNi(Nb,Mo) Alloys
Abstract
1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Yeh, J.W.; Chen, S.K.; Lin, S.J.; Gan, J.Y.; Chin, T.S.; Shun, T.T.; Tsau, C.H.; Chang, S.Y. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 2004, 6, 299–303. [Google Scholar] [CrossRef]
- Murty, B.S.; Yeh, J.W.; Ranganathan, S. High-Entropy Alloys; Butterworth-Heinemann: London, UK, 2014; pp. 13–36. [Google Scholar]
- Zhang, W.; Liaw, P.K.; Zhang, Y. Science and technology in high-entropy alloys. Sci. China Mater. 2018, 61, 2–22. [Google Scholar] [CrossRef]
- Wu, J.M.; Lin, S.J.; Yeh, J.W.; Chen, S.K.; Huang, Y.S.; Chen, H.C. Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content. Wear 2006, 261, 513–519. [Google Scholar] [CrossRef]
- Huo, W.Y.; Shi, H.F.; Ren, X.; Zhang, J.Y. Microstructure and wear behavior of CoCrFeMnNbNi High-Entropy Alloy Coating by TIG Cladding. Adv. Mater. Sci. Eng. 2015, 2015, 647351. [Google Scholar] [CrossRef]
- Senkov, O.N.; Wilks, G.B.; Scott, J.M.; Miracle, D.B. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics 2011, 19, 698–706. [Google Scholar] [CrossRef]
- Gao, M.C.; Carney, C.S.; Doğan, Ő.N.; Jablonksi, P.D.; Hawk, J.A.; Alman, D.E. Design of refractory high-entropy alloys. JOM 2015, 67, 2653–2669. [Google Scholar] [CrossRef]
- Antonaglia, J.; Xie, X.; Tang, Z.; Tsai, C.W.; Qiao, J.W.; Zhang, Y.; Laktionova, M.O.; Tabachnikova, E.D.; Yeh, J.W.; Senkov, O.N.; et al. Temperature effects on deformation and serration behavior of high-entropy alloys (HEAs). JOM 2014, 66, 2002–2008. [Google Scholar]
- Sheng, W.J.; Yang, X.; Wang, C.; Zhang, Y. Nano-Crystallization of high-entropy amorphous NbTiAlSiWxNy films prepared by magnetron sputtering. Entropy 2016, 18, 226. [Google Scholar] [CrossRef]
- Zhang, Y.; Yan, X.-H.; Liao, W.-B.; Zhao, K. Effects of nitrogen content on the structure and mechanical properties of (Al0.5CrFeNiTi0.25)Nx high-entropy films by reactive sputtering. Entropy 2018, 20, 624. [Google Scholar] [CrossRef]
- Hsu, Y.J.; Chiang, W.C.; Wu, J.K. Corrosion behavior of FeCoNiCrCux high-entropy alloys in 3.5% sodium chloride solution. Mater. Chem. Phys. 2005, 92, 112–117. [Google Scholar] [CrossRef]
- Tsau, C.H.; Lee, P.Y. Microstructures of Al7.5Cr22.5Fe35Mn20Ni15 high-entropy alloy and its polarization behaviors in sulfuric acid, nitric acid and hydrochloric acid solutions. Entropy 2016, 18, 288. [Google Scholar] [CrossRef]
- Lin, C.M.; Tsai, H.L. Evolution of microstructure, hardness, and corrosion properties of high-entropy Al0.5CoCrFeNi alloy. Intermetallics 2011, 19, 288–294. [Google Scholar] [CrossRef]
- Tsau, C.H.; Lin, S.X.; Fang, C.H. Microstructures and corrosion behaviors of FeCoNi and CrFeCoNi equimolar alloys. Mater. Chem. Phys. 2017, 186, 534–540. [Google Scholar] [CrossRef]
- Hashimoto, K.; Asami, K.; Teramoto, K. An X-ray photo-electron spectroscopic study on the role of molybdenum in increasing the corrosion resistance of ferritic stainless steels in HCl. Corros. Sci. 1979, 19, 3–14. [Google Scholar] [CrossRef]
- Pardo, A.; Merino, M.C.; Coy, A.E.; Viejo, F.; Arrabal, R.; Matykina, E. Effect of Mo and Mn additions on the corrosion behavior of AISI 304 and 316 stainless steel in H2SO4. Cossos. Sci. 2008, 50, 780–794. [Google Scholar]
- Mariano, N.A.; Souza, C.A.C.; May, J.E.; Kuri, S.E. Influence of Nb content on the corrosion resistance and saturation magnetic density of FeCuNbSiB alloys. Mater. Sci. Eng. A 2003, 354, 1–5. [Google Scholar] [CrossRef]
- Revie, R.W.; Uhlig, H.H. Corrosion and Corrosion Control: An Introduction to Corrosion Science and Engineering, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2008; pp. 31–63. [Google Scholar]
- Voort, G.F.V. Metallography-Principles and Practice; ASM International: Materials Park, OH, USA, 1999; pp. 425–426. [Google Scholar]
- Smith, W.F. Foundations of Materials Science and Engineering, 3rd ed; McGraw-Hill: New York, NY, USA, 2004; pp. 877–878. [Google Scholar]
- Chawla, S.L. Materials Selection for Corrosion Control; ASM International: Materials Park, OH, USA, 1993; p. 18. [Google Scholar]
- Abdallah, M. Corrosion behavior of 304 stainless steel in sulphuric acid solutions and its inhibition by some substituted pyrazolones. Mater. Chem. Phys. 2003, 81, 786–792. [Google Scholar] [CrossRef]
- Tomio, A.; Sagara, M.; Doi, T.; Amaya, H.; Otsuka, N.; Kudo, T. Role of alloyed molybdenum on corrosion resistance of austenitic Ni-Cr-Mo-Fe alloys in H2S-Cl− environments. Corros. Sci. 2015; 98, 391–398. [Google Scholar]
Alloys | Compositions (Atomic Percent) | |||||
---|---|---|---|---|---|---|
Cr | Fe | Co | Ni | Nb | Mo | |
CrFeCoNiMo | 20.1 | 20.2 | 19.5 | 20.5 | N/A | 19.7 |
CrFeCoNiNb0.5Mo0.5 | 21.4 | 19.4 | 19.8 | 17.6 | 11.0 | 10.8 |
CrFeCoNiNb | 19.8 | 19.8 | 19.0 | 19.5 | 22.0 | N/A |
Alloys | Compositions (Atomic Percent) | |||||
---|---|---|---|---|---|---|
Co | Cr | Fe | Ni | Mo | Nb | |
CrFeCoNiNb | ||||||
FCC | 18.4 | 26.7 | 24.3 | 25.5 | N/A | 5.1 |
HCP | 19.7 | 17.1 | 18.1 | 14.8 | N/A | 30.3 |
precipitate | 19.1 | 16.7 | 16.7 | 15.7 | N/A | 31.8 |
CrFeCoNiNb0.5Mo0.5 | ||||||
FCC | 18.4 | 22.1 | 20.4 | 22.8 | 9.2 | 7.1 |
HCP | 19.1 | 17.3 | 23.6 | 14.2 | 15.6 | 16.9 |
CrFeCoNiMo | ||||||
FCC | 21.3 | 19.2 | 22.0 | 24.0 | 13.5 | N/A |
SC | 17.2 | 21.9 | 17.7 | 14.4 | 28.9 | N/A |
Alloys | Volume Fraction of the Dendrites (vol.%) |
---|---|
CrFeCoNiMo | 42 ± 6 |
CrFeCoNiNb0.5Mo0.5 | 36 ± 6 |
CrFeCoNiNb | 68 ± 4 |
Alloys | Hardness | ||
---|---|---|---|
Overall | Dendrite | Interdendrite | |
CrFeCoNiMo | 604 ± 8 | 692 ± 18 | 405 ± 9 |
CrFeCoNiNb0.5Mo0.5 | 533 ± 6 | 745 ± 10 | 412 ± 7 |
CrFeCoNiNb | 652 ± 8 | 693 ± 23 | 398 ± 24 |
Alloys | icorr μA/cm2 | Ecorr V vs. SSE | Epp V vs. SSE | icrit mA/cm2 | ipass μA/cm2 |
---|---|---|---|---|---|
CrFeCoNiNb | 22.3 | −0.290 | −0.090 | 0.028 | 12.4 |
CrFeCoNiNb0.5Mo0.5 | 12.9 | −0.256 | −0.165 | 0.022 | 12.2 |
CrFeCoNiMo | 30.0 | −0.236 | −0.174 | 0.013 | 18.9 |
304SS | 30.0 | −0.320 | −0.140 | 0.930 | 17.2 |
Reaction | Electrode Potential (E° vs. SSE) |
---|---|
Cr, Cr3+ | −0.962 |
Fe, Fe2+ | −0.662 |
Co, Co2+ | −0.449 |
Ni, Ni2+ | −0.472 |
Nb, Nb3+ | −1.322 |
Mo, Mo3+ | −0.422 |
Alloys | icorr | Ecorr |
---|---|---|
A/cm2 | V vs. SSE | |
CrFeCoNiNb | 1.2 | −0.443 |
CrFeCoNiNb0.5Mo0.5 | 6.7 | −0.477 |
CrFeCoNiMo | 13.0 | −0.489 |
304SS | 12.9 | −0.860 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsau, C.-H.; Tsai, M.-C. The Effects of Mo and Nb on the Microstructures and Properties of CrFeCoNi(Nb,Mo) Alloys. Entropy 2018, 20, 648. https://doi.org/10.3390/e20090648
Tsau C-H, Tsai M-C. The Effects of Mo and Nb on the Microstructures and Properties of CrFeCoNi(Nb,Mo) Alloys. Entropy. 2018; 20(9):648. https://doi.org/10.3390/e20090648
Chicago/Turabian StyleTsau, Chun-Huei, and Meng-Chi Tsai. 2018. "The Effects of Mo and Nb on the Microstructures and Properties of CrFeCoNi(Nb,Mo) Alloys" Entropy 20, no. 9: 648. https://doi.org/10.3390/e20090648
APA StyleTsau, C.-H., & Tsai, M.-C. (2018). The Effects of Mo and Nb on the Microstructures and Properties of CrFeCoNi(Nb,Mo) Alloys. Entropy, 20(9), 648. https://doi.org/10.3390/e20090648