Quantum Quantifiers for an Atom System Interacting with a Quantum Field Based on Pseudoharmonic Oscillator States
Abstract
:1. Introduction
2. Physics Model and Dynamics
3. Quantum Quantifiers
4. Numerical Results and Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Nielsen, M.A.; Chuang, I.L. Quantum Computation and Information; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Alber, G.; Beth, T.; Horodecki, M.; Horodecki, P.; Horodecki, R.; Rötteler, M.; Weinfurter, H.; Zeilinger, R.A. Quantum Information; Springer: Berlin, Germany, 2001; Chapter 5. [Google Scholar]
- Horodecki, R.; Horodecki, P.; Horodecki, M.; Horodecki, K. Quantum entanglement. Rev. Mod. Phys. 2009, 81, 865–942. [Google Scholar] [CrossRef]
- Joo, J.; Munro, W.J.; Spiller, T.P. Quantum metrology with entangled coherent states. Phys. Rev. Lett. 2011, 107, 083601. [Google Scholar] [CrossRef] [PubMed]
- Amico, L.; Fazio, R.; Osterloh, A.; Vedral, V. Entanglement in many-body systems. Rev. Mod. Phys. 2008, 80, 517–576. [Google Scholar] [CrossRef] [Green Version]
- Gershenfeld, N.A.; Chuang, I.L. Bulk spin-resonance quantum computation. Science 1997, 275, 350–356. [Google Scholar] [CrossRef] [PubMed]
- Tóth, G.; Simon, C.; Cirac, J.I. Entanglement detection based on interference and particle counting. Phys. Rev. A 2003, 68, 062310. [Google Scholar] [CrossRef]
- Sete, E.A.; Eleuch, H.; Ooi, C.R. Light-to-matter entanglement transfer in optomechanics. JOSA B 2014, 31, 2821–2828. [Google Scholar] [CrossRef]
- Zheng, S.B.; Guo, G.C. Efficient scheme for two-atom entanglement and quantum information processing in cavity QED. Phys. Rev. Lett. 2000, 85, 2392–2395. [Google Scholar] [CrossRef] [PubMed]
- Blinov, B.B.; Moehring, D.L.; Duan, L.M.; Monroe, C. Observation of entanglement between a single trapped atom and a single photon. Nature 2004, 428, 153–157. [Google Scholar] [CrossRef] [PubMed]
- Togan, E.; Chu, Y.; Trifonov, A.S.; Jiang, L.; Maze, J.; Childress, L.; Dutt, M.G.; Sørensen, A.S.; Hemmer, P.R.; Zibrov, A.S.; et al. Quantum entanglement between an optical photon and a solid-state spin qubit. Nature 2010, 466, 730–734. [Google Scholar] [CrossRef] [PubMed]
- Wilk, T.; Webster, S.C.; Kuhn, A.; Rempe, G. Single-atom single-photon quantum interface. Science 2007, 317, 488–490. [Google Scholar] [CrossRef] [PubMed]
- Olmschenk, S.; Matsukevich, D.N.; Maunz, P.; Hayes, D.; Duan, L.M.; Monroe, C. Quantum teleportation between distant matter qubits. Science 2009, 323, 486–489. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.S.; Chen, Y.A.; Zhao, B.; Chen, S.; Schmiedmayer, J.; Pan, J.W. Experimental demonstration of a BDCZ quantum repeater node. Nature 2008, 454, 1098–1101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ritter, S.; Nölleke, C.; Hahn, C.; Reiserer, A.; Neuzner, A.; Uphoff, M.; Mücke, M.; Figueroa, E.; Bochmann, J.; Rempe, G. An elementary quantum network of single atoms in optical cavities. Nature 2012, 484, 195–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berry, M.V. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A 1984, 392, 45–57. [Google Scholar] [CrossRef]
- Aharonov, Y.; Anandan, J. Phase change during a cyclic quantum evolution. Phys. Rev. Lett. 1987, 58, 1593–1596. [Google Scholar] [CrossRef] [PubMed]
- Simon, B. Holonomy, the quantum adiabatic theorem, and Berry’s phase. Phys. Rev. Lett. 1983, 51, 2167–2170. [Google Scholar] [CrossRef]
- Anandan, J.; Stodolsky, L. Some geometrical considerations of Berry’s phase. Phys. Rev. D 1987, 35, 2597–2600. [Google Scholar] [CrossRef]
- Samuel, J.; Bhandari, R. General setting for Berry’s phase. Phys. Rev. Lett. 1988, 60, 2339–2342. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Cao, X.Z.; Su, Q.P.; Xiong, S.J.; Yang, C.P. Multi-target-qubit unconventional geometric phase gate in a multi-cavity system. Sci. Rep. 2016, 6, 21562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, X.L.; Wang, Z.; Wu, C.; Kwek, L.C.; Lai, C.H.; Oh, C.H. Scheme for unconventional geometric quantum computation in cavity QED. Phys. Rev. A 2007, 75, 052312. [Google Scholar] [CrossRef]
- Xiang-Bin, W.; Keiji, M. Nonadiabatic conditional geometric phase shift with NMR. Phys. Rev. Lett. 2001, 87, 097901. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.L.; Wang, Z.D. Implementation of universal quantum gates based on nonadiabatic geometric phases. Phys. Rev. Lett. 2002, 96, 289901. [Google Scholar] [CrossRef]
- Falci, G.; Fazio, R.; Palma, G.M.; Siewert, J.; Vedral, V. Detection of geometric phases in superconducting nanocircuits. Nature 2000, 407, 355–358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drummond, P.D.; Ficek, Z. Quantum Squeezing; Springer: Berlin, Germany, 2004. [Google Scholar]
- Wodkiewicz, K. Reduced quantum fluctuations in the Josephson junction. Phys. Rev. B 1985, 32, 4750. [Google Scholar] [CrossRef]
- Agarwal, G.S.; Puri, R.R. Cooperative behavior of atoms irradiated by broadband squeezed light. Phys. Rev. A 1990, 41, 3782–3791. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, M.M.; Razmi, M.S.K. Atomic-dipole squeezing and emission spectra of the nondegenerate two-photon Jaynes-Cummings model. Phys. Rev. A 1992, 45, 8121–8128. [Google Scholar] [CrossRef] [PubMed]
- Kitagawa, M.; Ueda, M. Squeezed spin states. Phys. Rev. A 1993, 47, 5138. [Google Scholar] [CrossRef] [PubMed]
- Civitarese, O.; Reboiro, M. Atomic squeezing in three level atoms. Phys. Lett. A 2006, 357, 224–228. [Google Scholar] [CrossRef]
- Civitarese, O.; Reboiro, M.; Rebón, L.; Tielas, D. Atomic squeezing in three-level atoms with effective dipole–dipole atomic interaction. Phys. Lett. A 2010, 374, 2117–2121. [Google Scholar] [CrossRef]
- Poulsen, U.V.; Mølmer, K. Squeezed light from spin-squeezed atoms. Phys. Rev. Lett. 2001, 87, 123601. [Google Scholar] [CrossRef] [PubMed]
- Yukalov, V.I.; Yukalova, E.P. Atomic squeezing under collective emission. Phys. Rev. A 2004, 70, 053828. [Google Scholar] [CrossRef] [Green Version]
- Wang, X. Spin squeezing in nonlinear spin-coherent states. J. Opt. B Quantum Semiclass. Opt. 2001, 3, 93–96. [Google Scholar] [CrossRef] [Green Version]
- Rojo, A.G. Optimally squeezed spin states. Phys. Rev. A 2003, 68, 013807. [Google Scholar] [CrossRef]
- Wang, X.; Sanders, B.C. Relations between bosonic quadrature squeezing and atomic spin squeezing. Phys. Rev. A 2003, 68, 033821. [Google Scholar] [CrossRef] [Green Version]
- Dicke, R.H. Coherence in spontaneous radiation processes. Phys. Rev. 1954, 93, 99–110. [Google Scholar] [CrossRef]
- El-Orany, F.A.; Wahiddin, M.R.B.; Obada, A.S. Single-atom entropy squeezing for two two-level atoms interacting with a single-mode radiation field. Opt. Commun. 2008, 281, 2854–2863. [Google Scholar] [CrossRef] [Green Version]
- Barnett, S.M.; Knight, P.L. Dissipation in a fundamental model of quantum optical resonance. Phys. Rev. A 1986, 33, 2444–2448. [Google Scholar] [CrossRef]
- Puri, R.R.; Agarwal, G.S. Finite-Q cavity electrodynamics: Dynamical and statistical aspects. Phys. Rev. A 1987, 35, 3433–3449. [Google Scholar] [CrossRef]
- Eiselt, J.; Risken, H. Quasiprobability distributions for the Jaynes-Cummings model with cavity damping. Phys. Rev. A 1991, 43, 346–360. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Khalek, S.; Obada, A.S. New features of Wehrl entropy and Wehrl PD of a single Cooper-pair box placed inside a dissipative cavity. Ann. Phys. 2010, 325, 2542–2549. [Google Scholar] [CrossRef]
- Klauder, J.R.; Skagerstam, B.S. Coherent States-Applications in Physics and Mathematical Physics; World Scientific: Singapore, 1985. [Google Scholar]
- Zhang, W.M.; Gilmore, R. Coherent states: Theory and some applications. Rev. Mod. Phys. 1990, 62, 867–927. [Google Scholar] [CrossRef]
- Glauber, R.J. The quantum theory of optical coherence. Phys. Rev. 1963, 130, 2529–2539. [Google Scholar] [CrossRef]
- Walls, D.F. Squeezed states of light. Nature 1983, 306, 141–146. [Google Scholar] [CrossRef]
- Loudon, R.; Knight, P.L. Squeezed light. J. Mod. Opt. 1987, 34, 709–759. [Google Scholar] [CrossRef]
- Popov, D. Barut-Girardello coherent states of the pseudoharmonic oscillator. J. Phys. A Math. Gen. 2001, 34, 5283. [Google Scholar]
- Popov, D.; Sajfert, V.; Zaharie, I. Pseudoharmonic oscillator and their associated Gazeau–Klauder coherent states. Phys. A Stat. Mech. Appl. 2008, 387, 4459–4474. [Google Scholar] [CrossRef]
- Sage, M.; Goodisman, J. Improving on the conventional presentation of molecular vibrations: Advantages of the pseudoharmonic potential and the direct construction of potential energy curves. Am. J. Phys. 1985, 53, 350–355. [Google Scholar] [CrossRef]
- Gazeau, J.P.; Klauder, J.R. Coherent states for systems with discrete and continuous spectrum. J. Phys. A Math. Gen. 1999, 32, 123–132. [Google Scholar] [CrossRef]
- Klauder, J.R.; Penson, K.A.; Sixdeniers, J.M. Constructing coherent states through solutions of Stieltjes and Hausdorff moment problems. Phys. Rev. A 2001, 64, 013817. [Google Scholar] [CrossRef]
- Gol’dman, I.I.; Krivchenko, V.D.; Kogan, V.I.; Galitskiy, V.M. Problems in Quantum Mechanics; Infosearch: London, UK, 1960. [Google Scholar]
- Roy, B.; Roy, P. Gazeau–Klauder coherent state for the Morse potential and some of its properties. Phys. Lett. A 2002, 296, 187–191. [Google Scholar] [CrossRef]
- Fakhri, H.; Chenaghlou, A. Barut–Girardello coherent states for the Morse potential. Phys. Lett. A 2003, 310, 1–8. [Google Scholar] [CrossRef]
- Popov, D. Gazeau–Klauder quasi-coherent states for the Morse oscillator. Phys. Lett. A 2003, 316, 369–381. [Google Scholar] [CrossRef]
- Popov, D.; Davidovic, D.M.; Arsenovic, D.; Saifert, V. P-function of the pseudo harmonic oscillator in terms of Klauder-Perelomov coherent states. Acta Phys. Slovaca 2006, 56, 445–453. [Google Scholar]
- Walls, D.F.; Milburn, G.J. Quantum Optics; Springer: Berlin, Germany, 1994. [Google Scholar]
- Wang, X.; Sanders, B.C.; Pan, S.H. Entangled coherent states for systems with SU (2) and SU (1, 1) symmetries. J. Phys. A Math. Gen. 2000, 33, 7451–7467. [Google Scholar] [CrossRef]
- Popov, D.; Pop, N.; Luminosu, I.; Chiriţoiu, V. Density matrix approach of the excitation on coherent states of the pseudoharmonic oscillator. EPL Europhys. Lett. 2009, 87, 44003. [Google Scholar] [CrossRef]
- Mojaveri, B.; Dehghani, A. Generalized su (1, 1) coherent states for pseudo harmonic oscillator and their nonclassical properties. Eur. Phys. J. D 2013, 67, 179. [Google Scholar] [CrossRef]
- Perelomov, A.M. Coherent states for arbitrary Lie group. Commun. Math. Phys. 1972, 26, 222–236. [Google Scholar] [CrossRef] [Green Version]
- Wodkiewicz, K.; Eberly, J.H. Coherent states, squeezed fluctuations, and the SU (2) am SU (1, 1) groups in quantum-optics applications. JOSA B 1985, 2, 458–466. [Google Scholar] [CrossRef]
- Popov, D.; Pop, N.; Sajfert, V. Excitation on the Coherent States of Pseudoharmonic Oscillator. AIP Conf. Proc. 2009, 1131, 61–66. [Google Scholar]
- Perelomov, A.M. Generalized Coherent States and Their Applications; Springer: Berlin, Germany, 1986. [Google Scholar]
- Gerry, C.C.; Silverman, S. Path integral for coherent states of the dynamical group SU (1, 1). J. Math. Phys. 1982, 23, 1995–2003. [Google Scholar] [CrossRef]
- Janes, E.T.; Cummings, F.W. Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proc. IEEE 1963, 51, 89–109. [Google Scholar] [CrossRef]
- Phoenix, S.J.; Knight, P.L. Comment on “Collapse and revival of the state vector in the Jaynes-Cummings model: An example of state preparation by a quantum apparatus”. Phys. Rev. Lett. 1991, 66, 2833. [Google Scholar] [CrossRef] [PubMed]
- Friedrich, B.; Herschbach, D. Alignment and trapping of molecules in intense laser fields. Phys. Rev. Lett. 1995, 74, 4623–4626. [Google Scholar] [CrossRef] [PubMed]
- Rempe, G.; Walther, H.; Klein, N. Observation of quantum collapse and revival in a one-atom maser. Phys. Rev. Lett. 1987, 58, 353–356. [Google Scholar] [CrossRef] [PubMed]
- Scully, M.O.; Zubairy, M.S. Quantum Optics; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Von Neumann, J. Mathematical Foundations of Quantum Mechanics; Princeton University Press: Princeton, NJ, USA, 1955. [Google Scholar]
- Berrada, K.; El Baz, M.; Hassouni, Y. On the construction of generalized su (1, 1) coherent states. Rep. Math. Phys. 2011, 68, 23–35. [Google Scholar] [CrossRef]
- Abdel-Khalek, S.; Berrada, K.; Ooi, C.R. Beam splitter entangler for nonlinear bosonic fields. Laser Phys. 2012, 22, 1449–1454. [Google Scholar] [CrossRef]
- Pancharatnam, S. The adiabatic phase and pancharatnam’s phase for polarized light. Proc. Indian Acad. Sci. 1956, 44, 247–262. [Google Scholar]
- Fang, M.F.; Zhou, P.; Swain, S. Entropy squeezing for a two-level atom. J. Mod. Opt. 2000, 47, 1043–1053. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raffah, B.M.; Berrada, K. Quantum Quantifiers for an Atom System Interacting with a Quantum Field Based on Pseudoharmonic Oscillator States. Entropy 2018, 20, 607. https://doi.org/10.3390/e20080607
Raffah BM, Berrada K. Quantum Quantifiers for an Atom System Interacting with a Quantum Field Based on Pseudoharmonic Oscillator States. Entropy. 2018; 20(8):607. https://doi.org/10.3390/e20080607
Chicago/Turabian StyleRaffah, Bahaaudin Mohammadnoor, and Kamal Berrada. 2018. "Quantum Quantifiers for an Atom System Interacting with a Quantum Field Based on Pseudoharmonic Oscillator States" Entropy 20, no. 8: 607. https://doi.org/10.3390/e20080607
APA StyleRaffah, B. M., & Berrada, K. (2018). Quantum Quantifiers for an Atom System Interacting with a Quantum Field Based on Pseudoharmonic Oscillator States. Entropy, 20(8), 607. https://doi.org/10.3390/e20080607