# Feynman Paths and Weak Values

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Dirac’s Notion of a Quantum Trajectory

#### 2.1. Dirac Trajectories

#### 2.2. The Feynman Propagator

#### 2.3. TPAs Involving the Momentum

#### 2.4. The Relation between Weak Values and TPAs

## 3. Weak Values Are Weighted TPAs

#### 3.1. Flow Lines Constructed from Weak Values

#### 3.2. Where Is the Quantum Potential?

## 4. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Landau, L.D.; Lifshitz, E.M. Quantum Mechanics: Non-Relativistic Theory; Pergamon Press: Oxford, UK, 1977. [Google Scholar]
- Einstein, A. Albert Einstein: Philosopher-Scientist; Schilpp, A.P., Ed.; Library of the Living Philosophers: Evanston, IL, USA, 1949; pp. 665–676. [Google Scholar]
- Heisenberg, W. Physics and Philosophy: The Revolution in Modern Science; George Allen and Unwin: London, UK, 1958. [Google Scholar]
- Jammer, M. The Philosophy of Quantum Mechanics; Wiley: New York, NY, USA, 1974. [Google Scholar]
- Kocsis, S.; Braverman, B.; Ravets, S.; Stevens, M.J.; Mirin, R.P.; Shalm, L.K.; Steinberg, A.M. Observing the average trajectories of single photons in a two-slit interferometer. Science
**2011**, 332, 1170–1173. [Google Scholar] [CrossRef] [PubMed] - Philippidis, C.; Dewdney, C.; Hiley, B.J. Quantum interference and the quantum potential. Il Nuovo Cimento B
**1979**, 52, 15–28. [Google Scholar] [CrossRef] - Mahler, D.H.; Rozema, L.A.; Fisher, K.; Vermeyden, L.; Resch, K.J.; Braverman, B.; Wiseman, H.M.; Steinberg, A.M. Measuring bohm trajectories of entangled photons. In Proceedings of the 2014 Conference on Lasers and Electro-Optics (CLEO)—Laser Science to Photonic Applications, San Jose, CA, USA, 8–13 June 2014. [Google Scholar]
- Aharonov, Y.; Albert, D.Z.; Vaidman, L. How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett.
**1988**, 60, 1351–1354. [Google Scholar] [CrossRef] [PubMed] - Feynman, R.P. Space-time approach to non-relativistic quantum mechanics. Rev. Mod. Phys.
**1948**, 20, 367–387. [Google Scholar] [CrossRef] - Schwinger, J. The theory of quantised fields I. Phys. Rev.
**1951**, 82, 914–927. [Google Scholar] [CrossRef] - Dirac, P.A.M. On the analogy between Classical and Quantum Mechanics. Rev. Mod. Phys.
**1945**, 17, 195–199. [Google Scholar] [CrossRef] - Nelson, E. Derivation of schrödinger’s equation from newtonian mechanics. Phys. Rev.
**1966**, 150, 1079–1085. [Google Scholar] [CrossRef] - Bohm, D. A suggested interpretation of the quantum theory in terms of hidden variables, I. Phys. Rev.
**1952**, 85, 180–193. [Google Scholar] [CrossRef] - Dirac, P.A.M. The Principles of Quantum Mechanics; Oxford University Press: Oxford, UK, 1947. [Google Scholar]
- Guillemin, V.W.; Sternberg, S. Symplectic Techniques in Physics; Cambridge University Press: Cambridge, UK, 1984. [Google Scholar]
- De Gosson, M.; Hiley, B.J. Imprints of the quantum world in classical mechanics. Found. Phys.
**2011**, 41, 1415–1436. [Google Scholar] [CrossRef] - Brown, L. Feynman’s Thesis: A New Approach to Quantum Mechanics; World Scientific Press: Singapore, 2005. [Google Scholar]
- De Gosson, M.; Hiley, B.J. Short-time quantum propagator and bohmian trajectories. Phys. Lett.
**2013**, 377, 3005–3008. [Google Scholar] [CrossRef] [PubMed] - Hirschfelder, J.O.; Christoph, A.C.; Palke, W.E. Quantum mechanical streamlines I. square potential barrier. J. Chem. Phys.
**1974**, 61, 5435–5455. [Google Scholar] [CrossRef] - Hirschfelder, J.O. Quantum mechanical equations of change. I. J.Chem. Phys.
**1978**, 68, 5151–5162. [Google Scholar] [CrossRef] - Bohm, D.; Hiley, B.J. Non-locality and locality in the stochastic interpretation of quantum mechanics. Phys. Rep.
**1989**, 172, 93–122. [Google Scholar] [CrossRef] - Hiley, B.J. Weak values: Approach through the Clifford and Moyal algebras. J. Phys. Conf. Ser.
**2012**, 361, 012014. [Google Scholar] [CrossRef] - Schwinger, J. The theory of quantum fields III. Phys. Rev.
**1953**, 91, 728–740. [Google Scholar] [CrossRef] - Leavens, C.R. Weak measurements from the point of view of bohmian mechanics. Found. Phys.
**2005**, 35, 469–491. [Google Scholar] [CrossRef] - Wiseman, H.M. Grounding bohmian mechanics in weak values and bayesianism. New J. Phys.
**2007**, 9, 165–177. [Google Scholar] [CrossRef] - Flack, R.; Hiley, B.J. Weak values of momentum of the electromagnetic field: Average momentum flow lines, not photon trajectories. arXiv, 2016; arXiv:1611.06510. [Google Scholar]
- Bohm, D.; Hiley, B.J.; Kaloyerou, P.N. An ontological basis for the quantum theory: II—A causal interpretation of quantum fields. Phys. Rep.
**1987**, 144, 349–375. [Google Scholar] [CrossRef] - Monachello, V.; Flack, R.; Hiley, B.J. A method for measuring the real part of the weak value of spin using non-zero mass particles. arXiv, 2017; arXiv:1701.04808. [Google Scholar]
- Morley, J.; Edmunds, P.D.; Barker, P.F. Measuring the weak value of the momentum in a double slit interferometer. J. Phys. Conf. Ser.
**2016**, 701, 012030. [Google Scholar] [CrossRef] - Moyal, J.E. Quantum mechanics as a statistical theory. Proc. Camb. Phil. Soc.
**1949**, 45, 99–123. [Google Scholar] [CrossRef] - Dürr, D.; Teufel, S. Bohmian Mechanics; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Bliokh, K.Y.; Bekshaev, A.Y.; Kofman, A.G.; Nori, F. Photon trajectories, anomalous velocities and weak measurements: A classical interpretation. New J. Phys.
**2013**, 15, 073022. [Google Scholar] [CrossRef] - Bohm, D.; Hiley, B.J. The Undivided Universe: An Ontological Interpretation of Quantum Theory; Routledge: London, UK, 1993. [Google Scholar]
- Feynman, R.P.; Leighton, R.B.; Sands, M. The Feynman Lectures on Physics; III, Sec 21-8; Addison-Wesley: Boston, MA, USA, 1965. [Google Scholar]
- Feynman, R.P.; Hibbs, A.R. Quantum Mechanics and Path Integrals; McGraw-Hill: New York, NY, USA, 1965. [Google Scholar]
- De Broglie, L. Non-Linear Wave Mechanics: A Causal Interpretation; Elsevier: Amsterdam, The Netherlands, 1960; p. 116. [Google Scholar]
- Smolin, L. Quantum mechanics and the principle of maximal variety. Found. Phys.
**2016**, 46, 736–758. [Google Scholar] [CrossRef] - Hiley, B.J. On the Nature of a Quantum Particle. 2018; in press. [Google Scholar]

**Figure 1.**Behaviour of the momenta sprays at the midpoint of ${\langle x,t|{x}^{\prime},{t}^{\prime}\rangle}_{\u03f5}$.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Flack, R.; Hiley, B.J.
Feynman Paths and Weak Values. *Entropy* **2018**, *20*, 367.
https://doi.org/10.3390/e20050367

**AMA Style**

Flack R, Hiley BJ.
Feynman Paths and Weak Values. *Entropy*. 2018; 20(5):367.
https://doi.org/10.3390/e20050367

**Chicago/Turabian Style**

Flack, Robert, and Basil J. Hiley.
2018. "Feynman Paths and Weak Values" *Entropy* 20, no. 5: 367.
https://doi.org/10.3390/e20050367