# Experimental Non-Violation of the Bell Inequality

## Abstract

**:**

## 1. Introduction

## 2. Invariant Set Theory

**Theorem**

**1.**

**Proof.**

- ${g}_{p}(x,y)$ is Euclidean,
- ${g}_{p}(x,y)\le 1$,
- ${g}_{p}(x,z)={g}_{p}(y,z)=p.$

## 3. The Sequential Stern-Gerlach Experiment

## 4. The Bell Inequality

## 5. Conspiracy and Free Will

#### 5.1. Nullifying the Notion of Conspiracy

#### 5.2. Free Will and Inaccessible Determinism

## 6. Relations to Other Approaches

#### 6.1. Bohmian Theory

#### 6.2. The Cellular Automaton Interpretation of Quantum Mechanics

#### 6.3. p-Adic Quantum Theory

## 7. Discussion

## Acknowledgments

## Conflicts of Interest

## References

- Shalm, A.E.A. Strong Loophole-Free Test of Local Realism. Phys. Rev. Lett.
**2015**, 115, 250402. [Google Scholar] [CrossRef] [PubMed] - Berry, M. Singular Limits. Phys. Today
**2002**, 55, 10–11. [Google Scholar] [CrossRef] - Bell, J. On the Einstein-Podolsky-Rosen Paradox. Physics
**1964**, 1, 195–200. [Google Scholar] [CrossRef] - Palmer, T. The invariant set postulate: A new geometric framework for the foundations of quantum theory and the role played by gravity. Proc. R. Soc.
**2009**, A465, 3165–3185. [Google Scholar] [CrossRef] - Palmer, T. Lorenz, Gödel and Penrose: New perspectives on determinism and causality in fundamental physics. Contemp. Phys.
**2014**, 55, 157–178. [Google Scholar] [CrossRef] - Palmer, T. A Finite Theory of Qubit Physics. arXiv, 2018; arXiv:1804.01734. [Google Scholar]
- Clauser, J.; Horne, M.; Shimony, A.; Holt, R. Proposed experiment to test local hidden variable theories. Phys. Rev. Lett.
**1969**, 23, 880–884. [Google Scholar] [CrossRef] - Hardy, L. Why is nature described by quantum theory? In Science and Ultimate Reality: Quantum Theory, Cosmology and Complexity; Barrow, J.D., Davies, P.C.W., Harper, C.L., Jr., Eds.; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Niven, I. Irrational Numbers; The Mathematical Association of America: Washington, DC, USA, 1956. [Google Scholar]
- Jahnel, J. When does the (co)-sine of a rational angle give a rational number? arXiv, 2010; arXiv:1006.2938. [Google Scholar]
- Sakurai, J. Modern Quantum Mechanics; Adison Wesley Longman: Boston, MA, USA, 1994. [Google Scholar]
- Nieuwenhuizen, T.M. Is the contextuality loophole fatal for the derivation of Bell inequalities? Found. Phys.
**2011**, 41, 580–591. [Google Scholar] [CrossRef] - Bell, J. Free variables and local causality. Dialectica
**1985**, 39, 103. [Google Scholar] [CrossRef] - Wiseman, H.; Cavalcanti, E.G. Causarum Investigatio and the Two Bell’s Theorems of John Bell. arXiv, 2015; arXiv:1503.06413. [Google Scholar]
- Blum, L.; Cucker, F.; Shub, M.; Smale, S. Complexity and Real Computation; Springer: Berlin, Germany, 1997. [Google Scholar]
- Dube, S. Undecidable problems in fractal geometry. Complex Syst.
**1993**, 7, 423–444. [Google Scholar] - Wolfram, S. A New Kind of Science; Wolfram Media: Oxfordshire, UK, 2002. [Google Scholar]
- Bohm, D.; Hiley, B.J. The Undivided Universe; Routledge: Abington-on-Thames, UK, 2003. [Google Scholar]
- Lorenz, E. Deterministic nonperiodic flow. J. Atmos. Sci.
**1963**, 20, 130–141. [Google Scholar] [CrossRef] - Hooft, G. The Cellular Automaton Interpretation of Quantum Mechanics; Springer: Berlin, Germany, 2016. [Google Scholar]
- Dragovich, B.; Khrennikov, A.Y.; Kozyrev, S.V.; Volovich, I.V.; Zelenov, E.I. p-Adic Mathematical Physics: The First 30 Years. p-Adic Numbers Ultrametr. Anal. Appl.
**2017**, 9, 87–121. [Google Scholar] [CrossRef] - Khrennikov, A. The problem of hidden variables in quantum mechanics. Phys. Lett. A
**1995**, 200, 219–223. [Google Scholar] [CrossRef] - Wood, C.J.; Spekkens, R.W. The lesson of causal discovery algorithms for quantum correlations: Causal explanations of Bell-inequality violations require fine tuning. New J. Phys.
**2015**, 17, 033002. [Google Scholar] [CrossRef] - Cavalcanti, E. G. Classical causal models for Bell and Kochen-Specker Inequality Violations require fine tuning. Phys. Rev. X
**2018**, 8, 021018. [Google Scholar] [CrossRef] - Palmer, T. A Gravitational Theory of the Quantum. arXiv, 2017; arXiv:1709.00329. [Google Scholar]

**Figure 1.**A state-space trajectory segment, which appears to be a simple line on some coarse scale, is in fact found to be, on magnification, a helix of trajectories. On further magnification, each of these helical trajectory segments is itself a helix of trajectories, and so on. A cross section through the original coarse-scale trajectory segment is a Cantor Set as illustrated below. At any particular level of magnification (i.e., fractal iterate), the trajectory segments can be labelled a or $\overline{)a}$ according to the regime to which they evolve.

**Figure 2.**A Cantor Set $\mathcal{C}$, comprising $p=17$ iterated disks: $N=16$ iterated pieces around the edge of a disk and 1 at the centre of a disk. Here, a single disk at the $(j-1)$th fractal iteration comprises 17 jth-iterate disks, and each of these comprises 17 $(j+1)$th-iterate disks. An element of $\mathcal{C}$ can be represented by a sequence $\{{\varphi}_{1},{\varphi}_{2},{\varphi}_{3},\dots \}$, where ${\varphi}_{i}/2\pi =n/N\in \mathbb{Q}$.

**Figure 3.**Here, $N=16$ classical state-space trajectories diverge into two distinct regimes labelled a and $\overline{)a}$. In this example, seven of the 16 evolve to the $\overline{)a}$ regime and the other nine evolve to the a regime. In terms of the parameter $\theta $ described in the text, here $\mathrm{cos}\theta =1/8\in \mathbb{Q}$.

**Figure 4.**(

**a**) a sequential Stern-Gerlach experiment where a particle is sent through three Stern-Gerlach devices, A, B and C; (

**b**) A, B and C shown as directions on the celestial sphere. Although to experimental accuracy A, B and C may be coplanar, they are not coplanar precisely. In invariant set theory, we demonstrate the non-commutativity of spin observables by number theory.

**Figure 5.**(

**a**) in general, it is impossible for all the cosines of the angular lengths of all three sides of the spherical triangle to be rational, and the internal angles rational multiples of $2\pi $. (

**b**) what actually occurs when (2) is tested experimentally. Here, the cosines of the angular lengths of all sides are rational. In a precise sense, (b) is ${g}_{p}$ distant from (a).

© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Palmer, T.N. Experimental Non-Violation of the Bell Inequality. *Entropy* **2018**, *20*, 356.
https://doi.org/10.3390/e20050356

**AMA Style**

Palmer TN. Experimental Non-Violation of the Bell Inequality. *Entropy*. 2018; 20(5):356.
https://doi.org/10.3390/e20050356

**Chicago/Turabian Style**

Palmer, T. N. 2018. "Experimental Non-Violation of the Bell Inequality" *Entropy* 20, no. 5: 356.
https://doi.org/10.3390/e20050356