# Information Thermodynamics Derives the Entropy Current of Cell Signal Transduction as a Model of a Binary Coding System

## Abstract

**:**

## 1. Introduction

_{j}, induces the modification of X

_{j}

_{+1}into X

_{j}

_{+1}*. In individual steps, the dephosphorylation of X

_{j}

_{+1}* into X

_{j}

_{+1}occurs by phosphatase Ph

_{j}by the release ability of inorganic phosphate Pi from X

_{j}

_{+1}*, and the pre-stimulation steady state is subsequently recovered. A signaling step in the above cascades may be described as follows:

_{j}and k

_{−j}are the kinetic coefficients. ATP, ADP, and Pi represent adenosine triphosphate, adenosine diphosphate, and inorganic phosphate, respectively. Consider all the possible distinct signal transduction events that correspond to all the possible combinations of the signal molecule X

_{j}, whose transduction length is ${\tau}_{j}$. For instance, an event is described as follows:

_{1}X

_{3}X

_{2}X

_{3}X

_{1}X

_{2}X

_{3}X

_{5}X

_{3}X

_{4}X

_{3}

_{j}with numbers ${N}_{j}\left(1\le j\le n\right)$, will correspond to all the possible combinations of X

_{j}. Therefore, N

_{1}= 2, N

_{2}= 2, N

_{3}= 5, N

_{4}= 1, N

_{5}= 1 and n = 5 in the signal event (2). In actuality, signaling cascades have been studied extensively using models of Mitogen-activated Protein Kinase (MAPK) pathways, in which the epidermal growth factor receptor, $c-\mathrm{Raf}$, MAP kinase-extracellular signal-regulated kinase [17], and kinase-extracellular signal-regulated kinase (ERK) are phosphorylated following treatment with growth factors. The Ras-c-Raf-ERK cascade (RRE) is a ubiquitous signaling pathway that conveys mitogenic and differentiation signals from the cell membrane to the nucleus.

_{j}or X

_{j}*, respectively:

_{j}*, and non-active j molecules, X

_{j}, participating in signaling cascades is regarded as constant, the protein production process is relatively slower than the signal transduction step:

## 2. Mixing Entropy in Signal Transduction

_{j}* and X

_{j}difference between the steps, the mixing entropy change of the j-th step, $\mathrm{d}{S}_{j}^{\mathrm{mix}}$, with a minimal concentration difference in X

_{j}*, $\mathrm{d}{{p}_{j}}^{\ast}$, and in X

_{j}, $\mathrm{d}{p}_{j}=-\mathrm{d}{{p}_{j}}^{\ast}$, is described:

## 3. Entropy Current and Signal Transduction

## 4. Conclusions

## Acknowledgments

## Conflicts of Interest

## Appendix A

## References

- Selimkhanov, J.; Taylor, B.; Yao, J.; Pilko, A.; Albeck, J.; Hoffmann, A.; Tsimring, L.; Wollman, R. Systems biology. Accurate information transmission through dynamic biochemical signaling networks. Science
**2014**, 346, 1370–1373. [Google Scholar] [CrossRef] [PubMed] - Sagawa, T.; Kikuchi, Y.; Inoue, Y.; Takahashi, H.; Muraoka, T.; Kinbara, K.; Ishijima, A.; Fukuoka, H. Single-cell E. coli response to an instantaneously applied chemotactic signal. Biophys. J.
**2014**, 107, 730–739. [Google Scholar] [CrossRef] [PubMed] - Cheong, R.; Rhee, A.; Wang, C.J.; Nemenman, I.; Levchenko, A. Information transduction capacity of noisy biochemical signaling networks. Science
**2011**, 334, 354–358. [Google Scholar] [CrossRef] [PubMed] - Watters, N.; Reeke, G.N. Neuronal spike train entropy estimation by history clustering. Neural Comput.
**2014**, 26, 1840–1872. [Google Scholar] [CrossRef] [PubMed] - Hanel, R.; Thurner, S.; Gell-Mann, M. How multiplicity determines entropy and the derivation of the maximum entropy principle for complex systems. Proc. Natl. Acad. Sci. USA
**2014**, 111, 6905–6910. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Teschendorff, A.E. Increased entropy of signal transduction in the cancer metastasis phenotype. BMC Syst. Biol.
**2010**, 4, e104. [Google Scholar] [CrossRef] [PubMed] - Lee, C.S.; Park, M.; Han, J.; Lee, J.H.; Bae, I.H.; Choi, H.; Son, E.D.; Park, Y.H.; Lim, K.M. Liver X receptor activation inhibits melanogenesis through the acceleration of ERK-mediated MITF degradation. J. Investig. Dermatol.
**2013**, 133, 1063–1071. [Google Scholar] [CrossRef] [PubMed] - Mackeigan, J.P.; Murphy, L.O.; Dimitri, C.A.; Blenis, J. Graded mitogen-activated protein kinase activity precedes switch-like c-Fos induction in mammalian cells. Mol. Cell. Biol.
**2005**, 25, 4676–4682. [Google Scholar] [CrossRef] [PubMed] - Newman, D.R.; Li, C.M.; Simmons, R.; Khosla, J.; Sannes, P.L. Heparin affects signaling pathways stimulated by fibroblast growth factor-1 and-2 in type II cells. Am. J. Physiol. Lung Cell. Mol. Physiol.
**2004**, 287, L191–L200. [Google Scholar] [CrossRef] [PubMed] - Petropavlovskaia, M.; Daoud, J.; Zhu, J.; Moosavi, M.; Ding, J.; Makhlin, J.; Assouline-Thomas, B.; Rosenberg, L. Mechanisms of action of islet neogenesis-associated protein, comparison of the full-length recombinant protein and a bioactive peptide. Am. J. Physiol. Endocrinol. Metab.
**2012**, 303, E917–E927. [Google Scholar] [CrossRef] [PubMed] - Tao, R.; Hoover, H.E.; Honbo, N.; Kalinowski, M.; Alano, C.C.; Karliner, J.S.; Raffai, R. High-density lipoprotein determines adult mouse cardiomyocyte fate after hypoxia-reoxygenation through lipoprotein-associated sphingosine 1-phosphate. Am. J. Physiol. Heart Circ. Physiol.
**2010**, 298, H1022–H1028. [Google Scholar] [CrossRef] [PubMed] - Mina, M.; Magi, S.; Jurman, G.; Itoh, M.; Kawaji, H.; Lassmann, T.; Arner, E.; Forrest, A.R.R.; Carninci, P.; Hayashizaki, Y. Promoter-level expression clustering identifies time development of transcriptional regulatory cascades initiated by ErbB receptors in breast cancer cells. Sci. Rep.
**2015**, 5, 11999. [Google Scholar] [CrossRef] [PubMed] - Wang, H.; Ubl, J.J.; Stricker, R.; Reiser, G. Thrombin (PAR-1)-induced proliferation in astrocytes via MAPK involves multiple signaling pathways. Am. J. Physiol. Cell Physiol.
**2002**, 283, C1351–C1364. [Google Scholar] [CrossRef] [PubMed] - Wang, Y.Y.; Liu, Y.; Ni, X.Y.; Bai, Z.H.; Chen, Q.Y.; Zhang, Y.; Gao, F.G. Nicotine promotes cell proliferation and induces resistance to cisplatin by alpha7 nicotinic acetylcholine receptormediated activation in Raw264.7 and El4 cells. Oncol. Rep.
**2014**, 31, 1480–1488. [Google Scholar] [CrossRef] [PubMed] - Yeung, K.; Seitz, T.; Li, S.; Janosch, P.; McFerran, B.; Kaiser, C.; Fee, F.; Katsanakis, K.D.; Rose, D.W.; Mischak, H.; et al. Suppression of Raf-1 kinase activity and MAP kinase signalling by RKIP. Nature
**1999**, 401, 173–177. [Google Scholar] [CrossRef] [PubMed] - Zhang, W.Z.; Yano, N.; Deng, M.; Mao, Q.; Shaw, S.K.; Tseng, Y.-T. β-Adrenergic Receptor-PI3K Signaling Crosstalk in Mouse Heart, Elucidation of Immediate Downstream Signaling Cascades. PLoS ONE
**2011**, 6, e26581. [Google Scholar] [CrossRef] [PubMed] - Jung, P.; Menssen, A.; Mayr, D.; Hermeking, H. AP4 encodes a c-MYC-inducible repressor of p21. Proc. Natl. Acad. Sci. USA
**2008**, 105, 15046–15051. [Google Scholar] [CrossRef] [PubMed] - Blossey, R.; Bodart, J.F.; Devys, A.; Goudon, T.; Lafitte, P. Signal propagation of the MAPK cascade in Xenopus oocytes, role of bistability and ultrasensitivity for a mixed proble. J. Math. Biol.
**2012**, 64, 1–39. [Google Scholar] [CrossRef] [PubMed] - Hollenberg, M.D. PARs in the stars, proteinase-activated receptors and astrocyte function. Focus on “Thrombin (PAR-1)-induced proliferation in astrocytes via MAPK involves multiple signaling pathways’. Am. J. Physiol. Cell Physiol.
**2002**, 283, C1347–C1350. [Google Scholar] [CrossRef] [PubMed] - Purutçuoğlu, V.; Wit, E. Estimating Network Kinetics of the MAPK/ERK Pathway Using Biochemical Data. Math. Probl. Eng.
**2012**, 2012, 1–34. [Google Scholar] [CrossRef] [Green Version] - Qiao, L.; Nachbar, R.B.; Kevrekidis, I.G.; Shvartsman, S.Y. Bistability and oscillations in the Huang-Ferrell model of MAPK signaling. PLoS Comput. Biol.
**2007**, 3, 1819–1826. [Google Scholar] [CrossRef] [PubMed] - Xin, X.; Zhou, L.; Reyes, C.M.; Liu, F.; Dong, L.Q. APPL1 mediates adiponectin-stimulated p38 MAPK activation by scaffolding the TAK1-MKK3-p38 MAPK pathway. Am. J. Physiol. Endocrinol. Metab.
**2011**, 300, E103–E110. [Google Scholar] [CrossRef] [PubMed] - Yoon, J.; Deisboeck, T.S. Investigating differential dynamics of the MAPK signaling cascade using a multi-parametric global sensitivity analysis. PLoS ONE
**2009**, 4, e4560. [Google Scholar] [CrossRef] [PubMed] - Zumsande, M.; Gross, T. Bifurcations and chaos in the MAPK signaling cascade. J. Theor. Biol.
**2010**, 265, 481–491. [Google Scholar] [CrossRef] [PubMed] - Watanabe, K.L.; Hayakawa, H. Geometric fluctuation theorem for a spin-boson system. Phys. Rev. E
**2017**, 96, 022118. [Google Scholar] [CrossRef] [PubMed] - Tsuruyama, T. Channel Capacity of Coding System on Tsallis Entropy and q-Statistics. Entropy
**2017**, 19, 682. [Google Scholar] [CrossRef] - Brillouin, L. Science and Information Theory, 2nd ed.; Dover Publication Inc.: New York, NY, USA, 2013. [Google Scholar]
- Andrieux, D.; Gaspard, P. Fluctuation theorem and Onsager reciprocity relations. J. Chem. Phys.
**2004**, 121, 6167–6174, Erratum in: J. Chem. Phys.**2006**, 125, 219902. [Google Scholar] [CrossRef] [PubMed] - Andrieux, D.; Gaspard, P. Fluctuation theorem and mesoscopic chemical clocks. J. Chem. Phys.
**2008**, 128, 154506. [Google Scholar] [CrossRef] [PubMed] - Gaspard, P. Fluctuation theorem for nonequilibrium reactions. J. Chem. Phys.
**2004**, 120, 8898–8905. [Google Scholar] [CrossRef] [PubMed]

**Figure 1.**Schematic of a reaction cascade in cell signal transduction. The receptor mediates the cellular response to the presence of the ligand in the extracellular medium. $A$ is a messenger, ATP, of signal transduction. Individual signaling molecules ${X}_{j}\left(1\le j\le n\right)$ relay the modification of individual steps, and the last species ${X}_{n}$ is translocated to the nucleus, where it controls gene expression by the transcription of mRNA. Ph denotes a phosphatase.

© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Tsuruyama, T.
Information Thermodynamics Derives the Entropy Current of Cell Signal Transduction as a Model of a Binary Coding System. *Entropy* **2018**, *20*, 145.
https://doi.org/10.3390/e20020145

**AMA Style**

Tsuruyama T.
Information Thermodynamics Derives the Entropy Current of Cell Signal Transduction as a Model of a Binary Coding System. *Entropy*. 2018; 20(2):145.
https://doi.org/10.3390/e20020145

**Chicago/Turabian Style**

Tsuruyama, Tatsuaki.
2018. "Information Thermodynamics Derives the Entropy Current of Cell Signal Transduction as a Model of a Binary Coding System" *Entropy* 20, no. 2: 145.
https://doi.org/10.3390/e20020145