Next Article in Journal
Semi-Supervised Minimum Error Entropy Principle with Distributed Method
Next Article in Special Issue
Fabrication of AlCoCrFeNi High-Entropy Alloy Coating on an AISI 304 Substrate via a CoFe2Ni Intermediate Layer
Previous Article in Journal
Likelihood Ratio Testing under Measurement Errors
Previous Article in Special Issue
First-Principles Design of Refractory High Entropy Alloy VMoNbTaW
Open AccessArticle

Effect of Atomic Size Difference on the Microstructure and Mechanical Properties of High-Entropy Alloys

1
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
2
High Entropy Materials Center, National Tsing Hua University, Hsinchu 30013, Taiwan
*
Author to whom correspondence should be addressed.
Entropy 2018, 20(12), 967; https://doi.org/10.3390/e20120967
Received: 29 October 2018 / Revised: 5 December 2018 / Accepted: 10 December 2018 / Published: 14 December 2018
(This article belongs to the Special Issue New Advances in High-Entropy Alloys)
The effects of atomic size difference on the microstructure and mechanical properties of single face-centered cubic (FCC) phase high-entropy alloys are studied. Single FCC phase high-entropy alloys, namely, CoCrFeMnNi, Al0.2CoCrFeMnNi, and Al0.3CoCrCu0.3FeNi, display good workability. The recrystallization and grain growth rates are compared during annealing. Adding Al with 0.2 molar ratio into CoCrFeMnNi retains the single FCC phase. Its atomic size difference increases from 1.18% to 2.77%, and the activation energy of grain growth becomes larger than that of CoCrFeMnNi. The as-homogenized state of Al0.3CoCrCu0.3FeNi high-entropy alloy becomes a single FCC structure. Its atomic size difference is 3.65%, and the grain growth activation energy is the largest among these three kinds of single-phase high-entropy alloys. At ambient temperature, the mechanical properties of Al0.3CoCrCu0.3FeNi are better than those of CoCrFeMnNi because of high lattice distortion and high solid solution hardening. View Full-Text
Keywords: high-entropy alloys; mechanical property; recrystallization high-entropy alloys; mechanical property; recrystallization
Show Figures

Figure 1

MDPI and ACS Style

Wu, C.-S.; Tsai, P.-H.; Kuo, C.-M.; Tsai, C.-W. Effect of Atomic Size Difference on the Microstructure and Mechanical Properties of High-Entropy Alloys. Entropy 2018, 20, 967.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Search more from Scilit
 
Search
Back to TopTop