Magnetic Contribution to the Seebeck Effect
Abstract
1. Introduction
2. Thermodynamics with Magnetic Dipoles and Fields
3. Thermolectric Effect
4. Experimental Evidence
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ramzy, D.; Raymond, F.; Volker, E.; Sylvie, H.; Antoine, M. Unconventional aspects of electronic transport in delafossite oxides. Sci. Technol. Adv. Mater. 2017, 18, 919–938. [Google Scholar]
- Maaroufi, A.; Oabi, O.; Lucas, B.; Amrani, A.E.; Degot, S. New composites of ZnO–P2O5/Ni having PTC transition and high Seebeck coefficient. J. Non-Cryst. Solids 2012, 358, 3312–3317. [Google Scholar] [CrossRef]
- Singh, S.; Wu, Q.S.; Yue, C.; Romero, A.H.; Soluyanov, A. Topological Thermoelectricity of Metals. arXiv, 2018; arXiv:1806.11406v2. [Google Scholar]
- Zhang, X.; Zhao, L.D. Thermoelectric materials: Energy conversion between heat and electricity. J. Mater. 2015, 1, 92–105. [Google Scholar] [CrossRef]
- Levin, E.; Long, F.; Douglas, J.E.; Buffon, M.; Lamontagne, L.; Pollock, T.M.; Seshadri, R. Enhancing Thermoelectric Properties through Control of Nickel Interstitials and Phase Separation in Heusler/Half-Heusler TiNi1.1Sn Composites. Materials 2018, 11, 903. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Xu, L.; Ding, L.; Wang, J.; Shen, M.; Lu, X.; Zhu, Z.; Behnia, K. Anomalous Nernst and Righi-Leduc Effects in Mn3Sn: Berry Curvature and Entropy Flow. Phys. Rev. Lett. 2017, 119, 056601. [Google Scholar] [CrossRef] [PubMed]
- Ikhlas, M.; Tomita, T.; Koretsune, T.; Suzuki, M.T.; Nishio-Hamane, D.; Arita, R.; Otani, Y.; Nakatsuji, S. Large anomalous Nernst effect at room temperature in a chiral antiferromagnet. Nat. Phys. 2017, 13, 1085–1090. [Google Scholar] [CrossRef]
- Watzman, S.J.; McCormick, T.M.; Shekhar, C.; Wu, S.C.; Sun, Y.; Prakash, A.; Felser, C.; Trivedi, N.; Heremans, J.P. Dirac dispersion generates unusually large Nernst effect in Weyl semimetals. Phys. Rev. Lett. 2018, 97, 161404. [Google Scholar] [CrossRef]
- Behnia, K. Fundamentals of Thermoelectricity, 1st ed.; OUP Oxford: Oxford, UK, 2015. [Google Scholar]
- Hartmann, S.; Oeschler, N.; Krellner, C.; Geibel, C.; Paschen, S.; Steglich, F. Thermopower Evidence for an Abrupt Fermi Surface Change at the Quantum Critical Point of YbRh2Si2. Phys. Rev. Lett. 2010, 104, 096401. [Google Scholar] [CrossRef] [PubMed]
- Monnier, R.; Zlatic, V. Modern Theory of Thermoelectric; Oxford University Press: Oxford, UK, 2014. [Google Scholar]
- Bhaseen, M.J.; Green, A.G.; Sondhi, S.L. Magnetothermoelectric response near quantum critical points. Phys. Rev. B 2009, 79, 094502. [Google Scholar] [CrossRef]
- Ouerdane, H.; Varlamov, A.A.; Kavokin, A.V.; Goupil, C.; Vining, C.B. Enhanced thermoelectric coupling near electronic phase transition: The role of fluctuation Cooper pairs. Phys. Rev. B 2015, 91, 100501. [Google Scholar] [CrossRef]
- Uchida, K.; Takahashi, S.; Harii, K.; Ieda, J.; Koshibae, W.; Ando, K.; Maekawa, S.; Saitoh, E. Observation of the spin Seebeck effect. Nature 2008, 455, 778–781. [Google Scholar] [CrossRef] [PubMed]
- Uchida, K.; Xiao, J.; Adachi, H.; Ohe, J.; Takahashi, S.; Ieda, J.; Ota, T.; Kajiwara, Y.; Umezawa, H.; Kawai, H.; et al. Spin Seebeck insulator. Nat. Mater. 2010, 9, 894–897. [Google Scholar] [CrossRef] [PubMed]
- Jaworski, C.; Yang, J.; Mack, S.; Awschalom, D.; Heremans, J.; Myers, R. Observation of the spin-Seebeck effect in a ferromagnetic semiconductor. Nat. Mater. 2010, 9, 898–903. [Google Scholar] [CrossRef] [PubMed]
- Bauer, G.; Saitoh, E.; van Wees, B. Spin caloritronics. Nat. Mater. 2012, 11, 391–399. [Google Scholar] [CrossRef] [PubMed]
- Uchida, K.; Ishida, M.; Kkkawa, T.; Kirikhara, A.; Murakami, T.; Saitoh, E. Longitudinal spin Seebeck effect: From fundamentals to applications. J. Phys. Condens. Matter 2014, 26, 389601. [Google Scholar] [CrossRef]
- Sinova, J.; Valenzela, S.; Wunderlich, J.; Back, C.; Jungwrith, T. Spin Hall effects. Rev. Mod. Phys. 2015, 87, 1213. [Google Scholar] [CrossRef]
- Roschewsky, N.; Schreier, M.; Kamra, A.; Schade, F.; Ganzhorn, K.; Meyer, S.; Huebl, H.; Gross, R.; Goennenwein, S.T.B. Time resolved spin Seebeck effect experiments. Appl. Phys. Lett. 2014, 104, 202410. [Google Scholar] [CrossRef]
- Guo, E.J.; Cramer, J.; Kehlberger, A.; Ferguson, C.A.; MacLaren, D.A.; Jakov, G.; Kläui, M. Influence of Thickness and Interface on the Low-Temperature Enhancement of the Spin Seebeck Effect in YIG Films. Phys. Rev. X 2016, 6, 031012. [Google Scholar] [CrossRef]
- Seki, S.; Ideue, T.; Kubota, M.; Kozuka, Y.; Takagi, R.; Nakamura, M.; Kaneko, Y.; Kawasaki, M.; Tokura, Y. Thermal Generation of spin currents in antiferromagnet. Phys. Rev. Lett. 2015, 115, 266601. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.Q.; Zhu, Z.G.; Su, G.; Jauho, A.P. Thermally Driven Pure Spin and Valley Currents via the Anomalous Nernst Effect in Monolayer Group-VI Dichalcogenides. Phys. Rev. Lett. 2015, 115, 246601. [Google Scholar] [CrossRef] [PubMed]
- Wegrowe, J.E.; Drouhin, H.J.; Lacour, D. Thermal spin-accumulation. Proc. SPIE 2012, 8461, 84610D. [Google Scholar]
- Sears, M.R.; Saslow, W.M. Irreversible thermodynamics of transport across interfaces. Can. J. Phys. 2011, 89, 1041–1050. [Google Scholar] [CrossRef]
- Herzer, G. Theory of the thermopower of amorphous ferromagnetic. J. Mag. Mag. Mater. 1984, 45, 345–353. [Google Scholar] [CrossRef]
- Kasuya, T. Effect of s-d Interation on Transport Phenomena. Prog. Theor. Phys. 1959, 22, 227–246. [Google Scholar] [CrossRef]
- Richter, R.; Goedsche, F. On the Thermoelectric Power of Amorphous Ferromagnets. Phys. Stat. Solidi B 1984, 123, 143–154. [Google Scholar] [CrossRef]
- Kim, C.O.; Park, J.S.; Choi, E.S.; Park, Y.W.; Jeong, Y.H.; Ryu, C.M.; Kim, C.K.; Nahm, K. Thermoelectric Power of YCo12B6 and GdCo12B6 Intermetallics. Phys. Stat. Solidi 1998, 208, 129–135. [Google Scholar] [CrossRef]
- Korenblit, I. On the thermopower of discordered ferromagnetic metals. J. Phys. F Met. Phys. 1982, 12, 1259. [Google Scholar] [CrossRef]
- Kettler, W.; Kaul, S.; Rosenberg, M. Absolute thermoelectric power in ferromagnetic FexNi80−xB20 alloys. Phys. Rev. B 1989, 39, 6140. [Google Scholar] [CrossRef]
- Schubert, G.; Christoph, V. Calculation of Thermopower and Thermal Conductivity Using Correlation Functions. Phys. Stat. Solidi B 1985, 127, K89–K93. [Google Scholar] [CrossRef]
- Christoph, V.; Roepke, G. Theory of Inverse Linear Response Coefficients. Phys. Stat. Solidi B 1985, 131, 11–42. [Google Scholar] [CrossRef]
- Brechet, S.; Ansermet, J.P. Thermdynamics of a continuous medium with electric and magnetic dipoles. Eur. Phys. J. B 2013, 86, 318. [Google Scholar] [CrossRef]
- Yu, H.; Brechet, S.; Che, P.; Vetro, F.; Collet, M.; Tu, S.; Zhang, Y.; Zhang, Y.; Stueckler, T.; Wang, L.; et al. Thermal spin torques in magnetic insulators. Phys. Rev. B 2017, 95, 104432. [Google Scholar] [CrossRef]
- Monzon, L.M.A.; Coey, J. Magnetic fields in electrochemistry: The Kelvin force. A mini-review. Electrochem. Commun. 2014, 42, 42–45. [Google Scholar] [CrossRef]
- Herring, C. Energy of a Bloch Wall on the Band Picture. I. Spiral Approach. Phys. Rev. 1952, 85, 1003. [Google Scholar] [CrossRef]
- Mitchell, A. Ferromagnetic Relaxation by the Exchange Interaction between Ferromagnetic Electrons and Conduction Electrons. Phys. Rev. 1957, 105, 1439–1444. [Google Scholar] [CrossRef]
- Hirst, L. Spin transport in ferromagnetic metals. Phys. Rev. 1966, 141, 503. [Google Scholar] [CrossRef]
- Berger, L. Interaction of electrons with spin waves in the bulk and in multilayers. J. Appl. Phys. 2002, 91, 6795. [Google Scholar] [CrossRef]
- Jia, P.; Wang, Y.; Yan, Z.; Gong, J.; Lin, L.; Gao, F.; Liu, J.M. Electronic phase engineering induced thermoelectric enhancement in manganites. J. Appl. Phys. 2018, 124, 034501. [Google Scholar] [CrossRef]
- Ravinder, D.; Mohan, G.R. Thermoelectric power studies of zinc-substituted nickel ferrites. Mater. Lett. 2000, 44, 139–143. [Google Scholar] [CrossRef]
- Sankar, S.; Dender, D.; Borchers, J.; Smith, D.; Erwin, R.; Kline, S.; Berkowitz, A. Magnetic correlations in non-percolated Co-SiO2 granular films. J. Mag. Mag. Mater. 2000, 221, 1–9. [Google Scholar] [CrossRef]
- Fulde, P. Electron Correlations in Molecules and Solids; Springer Series in Solid State Sciences; Springer: Berlin/Heidelberg, Germany, 1995. [Google Scholar]
- Maeda, T.; Somura, T. Variations of Thermoelectric Power of Ni-Fe Inva Alloys with Temperature and Magnetic Field. J. Phys. Soc. Jpn. 1978, 44, 148–153. [Google Scholar] [CrossRef]
- Yu, H.; Brechet, S.; Ansermet, J.P. Spin Caloritronics, origin and outlook. Phys. Lett. A 2017, 381, 825–837. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ansermet, J.-P.; Brechet, S.D. Magnetic Contribution to the Seebeck Effect. Entropy 2018, 20, 912. https://doi.org/10.3390/e20120912
Ansermet J-P, Brechet SD. Magnetic Contribution to the Seebeck Effect. Entropy. 2018; 20(12):912. https://doi.org/10.3390/e20120912
Chicago/Turabian StyleAnsermet, Jean-Philippe, and Sylvain D. Brechet. 2018. "Magnetic Contribution to the Seebeck Effect" Entropy 20, no. 12: 912. https://doi.org/10.3390/e20120912
APA StyleAnsermet, J.-P., & Brechet, S. D. (2018). Magnetic Contribution to the Seebeck Effect. Entropy, 20(12), 912. https://doi.org/10.3390/e20120912