Short-Time Propagators and the Born–Jordan Quantization Rule
Abstract
1. Motivation and Background
1.1. Weyl versus Born and Jordan
1.2. The Kerner and Sutcliffe Approach to Quantization
1.3. What We Will Do
- In Section 2 we discuss the accuracy of Kerner and Sutcliffe’s propagator by comparing it with the more familiar Van Vleck propagator; we show that for small times both are approximations to order to the exact propagator of Schrödinger’s equation.
- In Section 3 we show that if one assume’s that short-time evolution of the wavefunction (for an arbitrary Hamiltonian H) is given by the Kerner and Sutcliffe propagator, then H must be quantized following the rule (12); we thereafter show that when H is a monomial then the corresponding operator is given by the Born–Jordan rule (1), not by the Weyl rule 2.
2. On Short-Time Propagators
2.1. The Van Vleck Propagator
2.2. The Kerner–Sutcliffe Propagator
2.3. Comparison of Short-Time Propagators
3. The Case of Arbitrary Hamiltonians
3.1. The Main Result
3.2. The Case of Monomials
3.3. Physical Hamiltonians
4. Discussion
Funding
Conflicts of Interest
References
- Dewey, T.G. Numerical mathematics of Feynman path integrals and the operator ordering problem. Phys. Rev. A 1990, 42, 32–37. [Google Scholar] [CrossRef] [PubMed]
- Hall, M. Weyl’s rule and Wigner equivalents for phase space monomials. J. Phys. A Math. Gen. 1985, 18, 29–36. [Google Scholar] [CrossRef]
- Khandekar, D.C.; Lawande, S.V. Feynman Path Integrals: Some Exact Results and Applications. Phys. Reps. 1986, 137, 115–229. [Google Scholar] [CrossRef]
- Kumano-go, N.; Fujiwara, D. Phase space Feynman path integrals via piecewise bicharacteristic paths and their semiclassical approximations. Bull. Sci. Math. 2008, 132, 313–357. [Google Scholar]
- Mayes, I.W.; Dowker, J.S. Canonical functional integrals in general coordinates. Proc. R. Soc. Lond. A 1972, 327, 131–135. [Google Scholar] [CrossRef]
- Mayes, I.W.; Dowker, J.S. Hamiltonian orderings and functional integrals. J. Math. Phys. 1973, 14, 434–439. [Google Scholar] [CrossRef]
- Shewell, J.R. On the Formation of Quantum-Mechanical Operators. Am. J. Phys. 1959, 27, 16–21. [Google Scholar] [CrossRef]
- de Gosson, M. Born–Jordan Quantization and the Equivalence of the Schrödinger and Heisenberg Pictures. Found. Phys. 2014, 44, 1096–1106. [Google Scholar] [CrossRef] [PubMed]
- McCoy, N.H. On the function in quantum mechanics which corresponds to a given function in classical mechanics. Proc. Natl. Acad. Sci. USA 1932, 18, 674–676. [Google Scholar] [CrossRef] [PubMed]
- Dahl, J.P.; Springborg, M. Wigner’s phase space function and atomic structure: I. The hydrogen atom ground state. Mol. Phys. 1982, 47, 1001–1019. [Google Scholar] [CrossRef]
- de Gosson, M. The Angular Momentum Dilemma and Born–Jordan Quantization. Found. Phys. 2017, 47, 61–70. [Google Scholar] [CrossRef]
- de Gosson, M. Born–Jordan Quantization: Theory and Applications; Springer: New York, NY, USA, 2016. [Google Scholar]
- Heisenberg, W. Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen. Z. Physik 1925, 33, 879–893. [Google Scholar] [CrossRef]
- Born, M.; Jordan, P. Zur Quantenmechanik. Z. Physik 1925, 34, 858–888. [Google Scholar] [CrossRef]
- Born, M.; Heisenberg, W.; Jordan, P. Zur Quantenmechanik II. Z. Physik 1925, 35, 557–615. [Google Scholar] [CrossRef]
- Kerner, E.H.; Sutcliffe, W.G. Unique Hamiltonian Operators via Feynman Path Integrals. J. Math. Phys. 1970, 11, 391–393. [Google Scholar] [CrossRef]
- Garrod, C. Hamiltonian Path-Integral Methods. Rev. Mod. Phys. 1966, 38, 483–494. [Google Scholar] [CrossRef]
- Kauffmann, S.K. Unique Closed-Form Quantization Via Generalized Path Integrals or by Natural Extension of the Standard Canonical Recipe. arXiv, 1995; arXiv:hep-th/9505189v2. [Google Scholar]
- Kauffmann, S.K. Unambiguous Quantization from the Maximum Classical Correspondence that Is Self-consistent: The Slightly Stronger Canonical Commutation Rule Dirac Missed. Found. Phys. 2011, 41, 805–819. [Google Scholar] [CrossRef]
- de Gosson, M. Symplectic Covariance properties for Shubin and Born-Jordan pseudo-differential operators. Trans. Amer. Math. Soc. 2013, 365, 3287–3307. [Google Scholar] [CrossRef]
- de Gosson, M.; Luef, F. Preferred Quantization Rules: Born–Jordan vs. Weyl; Applications to Phase Space Quantization. J. Pseudo-Differ. Oper. Appl. 2011, 2, 115–139. [Google Scholar] [CrossRef]
- Cohen, L. Hamiltonian Operators via Feynman Path Integrals. J. Math. Phys. 1970, 11, 3296–3297. [Google Scholar] [CrossRef]
- Makri, N.; Miller, W.H. Correct short time propagator for Feynman path integration by power series expansion in Δt. Chem. Phys. Lett. 1988, 15, 1–8. [Google Scholar] [CrossRef]
- Makri, N.; Miller, W.H. Exponential power series expansion for the quantum time evolution operator. J. Chem. Phys. 1989, 90, 904–911. [Google Scholar] [CrossRef]
- de Gosson, M. The Principles of Newtonian and Quantum Mechanics, the Need for Planck’s Constant ℏ; Imperial College Press: London, UK, 2001. [Google Scholar]
- Gutzwiller, M.C. Chaos in Classical and Quantum Mechanics; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Schulman, L.S. Techniques and Applications of Path Integration; Wiley: New York, NY, USA, 1981. [Google Scholar]
- Maslov, V.P.; Fedoriuk, M.V. Semi-Classical Approximation in Quantum Mechanics; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2001; Volume 7. [Google Scholar]
- de Gosson, M. Symplectic Methods in Harmonic Analysis and in Mathematical Physics; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- de Gosson, M.; Hiley, B.J. Short-time quantum propagator and Bohmian trajectories. Phys. Lett. A 2013, 377, 3005–3008. [Google Scholar] [CrossRef] [PubMed]
- de Gosson, M.; Hiley, B.J. Hamiltonian flows, short-time quantum propagators and the quantum Zeno effect. J. Phys. Conf. Ser. 2013, 504, 012027. [Google Scholar] [CrossRef]
- Park, D. Introduction to the Quantum Theory; McGraw-Hill Inc.: New York, NY, USA, 1992. [Google Scholar]
- Hörmander, L. The Analysis of Linear Partial Differential Operators I; Springer: New York, NY, USA, 1985; Volume 256. [Google Scholar]
- Stone, M.H. Linear Transformations in Hilbert Space: III. Operational Methods and Group Theory. Proc. Natl. Acad. Sci. USA 1930, 16, 172–175. [Google Scholar] [CrossRef] [PubMed]
- Jauch, J.M.; Morrow, R.A. Foundations of quantum mechanics. Am. J. Phys. 1968, 36, 771. [Google Scholar] [CrossRef]
- Arnold, V.I. Mathematical Methods of Classical Mechanics, Graduate Texts in Mathematics, 2nd ed.; Springer: New York, NY, USA, 1989. [Google Scholar]
- Goldstein, H. Classical Mechanics, 2nd ed.; Addison–Wesley: Boston, MA, USA, 1980. [Google Scholar]
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Gosson, M.A. Short-Time Propagators and the Born–Jordan Quantization Rule. Entropy 2018, 20, 869. https://doi.org/10.3390/e20110869
De Gosson MA. Short-Time Propagators and the Born–Jordan Quantization Rule. Entropy. 2018; 20(11):869. https://doi.org/10.3390/e20110869
Chicago/Turabian StyleDe Gosson, Maurice A. 2018. "Short-Time Propagators and the Born–Jordan Quantization Rule" Entropy 20, no. 11: 869. https://doi.org/10.3390/e20110869
APA StyleDe Gosson, M. A. (2018). Short-Time Propagators and the Born–Jordan Quantization Rule. Entropy, 20(11), 869. https://doi.org/10.3390/e20110869