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Abstract: We have shown in previous work that the equivalence of the Heisenberg and Schrödinger
pictures of quantum mechanics requires the use of the Born and Jordan quantization rules. In the
present work we give further evidence that the Born–Jordan rule is the correct quantization scheme
for quantum mechanics. For this purpose we use correct short-time approximations to the action
functional, initially due to Makri and Miller, and show that these lead to the desired quantization of
the classical Hamiltonian.
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1. Motivation and Background

1.1. Weyl versus Born and Jordan

There have been several attempts in the literature to find the “right” quantization rule for
observables using either algebraic or analytical techniques [1–7]. In a recent paper [8] we have analyzed
the Heisenberg and Schrödinger pictures of quantum mechanics, and shown that if one postulates that
both theories are equivalent, then one must use the Born–Jordan quantization rule

(BJ) xm p` −→ 1
m + 1

m

∑
k=0

x̂k p̂` x̂m−k, (1)

and not the Weyl rule (To be accurate, it was McCoy [9] who showed that Weyl’s quantization scheme
leads to Formula (2)).

(Weyl) xm p` −→ 1
2m

m

∑
k=0

(
m
k

)
x̂k p̂` x̂m−k (2)

for monomial observables. The Born–Jordan and Weyl rules yield the same result only if m < 2 or
` < 2; for instance in both cases the quantization of the product xp is 1

2 (x̂ p̂ + p̂x̂). One can also show
that the product p f (x) is, for any smooth function f of position alone, given in both cases by the
symmetric rule

p f (x) −→ 1
2
( p̂ f (x) + f (x) p̂).

It follows that if H is a Hamiltonian of the type

H =
n

∑
j=1

1
2mj

(pj − Aj(x))2 + V(x)

one can use either the Weyl or the Born–Jordan prescriptions to get the the corresponding quantum
operator, which yields the familiar expression
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Ĥ =
n

∑
j=1

1
2mj

(
−ih̄

∂

∂xj
− A(x)

)2

+ V(x).

(See Section 3.3). Since this Hamiltonian is without doubt the one which most often occurs in quantum
mechanics one could ask why one should bother about which is the “correct” quantization. It turns
out that this question is just a little bit more than academic: There are simple physical observables
which yield different quantizations in the Weyl and Born–Jordan schemes. One interesting example
is that of the squared angular momentum: Writing r = (x, y, z) and p = (px, py, pz) the square of the
classical angular momentum

` = (ypz − zpy)i + (zpx − xpz)j + (xpy − ypx)k (3)

is the function `2 = `2
x + `2

y + `2
z where

`2
x = x2 p2

y + y2 p2
x − 2xpxypy (4)

and so on. The Weyl quantization of `2
x is

( ̂̀2x)W = x̂2 p̂2
y + x̂2

y p̂2
x − 1

2 (x̂ p̂x + p̂x x̂)(ŷ p̂y + p̂yŷ) (5)

while its Born–Jordan quantization is

( ̂̀2x)BJ = x̂2 p̂2
y + x̂2

y p̂2
x − 1

2 (x̂ p̂x + p̂x x̂)(ŷ p̂y + p̂yŷ)− 1
6 h̄2; (6)

similar relations are obtained for `2
y and `2

z so that, in the end,

( ̂̀2)W − ( ̂̀2)BJ =
1
2 h̄2. (7)

This discrepancy has been dubbed the “angular momentum dilemma ”[10]; in [11] we have
discussed this apparent paradox and shown that it disappears if one systematically uses
Born–Jordan quantization.

1.2. The Kerner and Sutcliffe Approach to Quantization

As we have proven in [8,12], Heisenberg’s matrix mechanics [13], as rigorously constructed
by Born and Jordan in [14] and Born, Jordan, and Heisenberg in [15], explicitly requires the use of
the quantization rule (1) to be mathematically consistent, a fact which apparently has escaped the
attention of physicists, and philosophers or historians of Science. In the present paper, we will show
that the Feynman path integral approach is another genuinely physical motivation for Born–Jordan
quantization of arbitrary observables; it corrects previous unsuccessful attempts involving path integral
arguments which do not work for a reason that will be explained. One of the most convincing of these
attempts is the paper [16] by Kerner and Sutcliffe. Elaborating on previous work of Garrod [17] Kerner
and Sutcliffe tried to justify the Born–Jordan rule as the unique possible quantization (see Steven
Kauffmann’s [18,19] brilliant discussion of this work). Assuming that Ĥ is the quantization of some
general Hamiltonian H, they write as is usual in the theory of the phase space Feynman integral the
propagator as

〈x|e−
i
h̄ Ĥt|x′〉 = lim

N→∞

∫
dxN−1 · · · dx1∏N

k=1〈xk|e−
i
h̄ Ĥ∆t|xk−1〉 (8)

where xN = x and x0 = x′ are fixed and ∆t = t/N. They thereafter use the approximation

〈xk|e−
i
h̄ Ĥ∆t|xk−1〉 ≈

1
2πh̄

∫
e

i
h̄ S(x,x′ ,p,∆t)dp (9)
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the function S being given by

S(x, x′, p, ∆t) = p(x− x′)− H(x, x′, p)∆t (10)

where H is the time average of H over p fixed and x = x(t), that is

H(x, x′, p) =
1

∆t

∫ ∆t

0
H(x′ + s

x− x′

∆t
, p)ds. (11)

Notice that introducing the dimensionless parameter τ = s/∆t, Formula (11) can be written in the
more convenient form

H(x, x′, p) =
∫ 1

0
H(τx + (1− τ)x′, p)dτ (12)

which is the usual mathematical definition of Born–Jordan quantization: See de Gosson [12,20] and
de Gosson and Luef [21].

Taking the limit ∆t→ 0 the operator Ĥ can then be explicitly and uniquely determined, and Kerner
and Sutcliffe show that in particular this leads to the Born–Jordan ordering (1) when their Hamiltonian
H is a monomial xm p`. Unfortunately (as immediately Cohen’s rebuttal was published in the
same volume of J. Math. Phys. in which Kerner and Sutcliffe published their results. Noted by
Cohen [22]) there are many a priori equally good constructions of the Feynman integral, leading to
other quantization rules. In fact, argues Cohen, there is a great freedom of choice in calculating the
action p(x− x′)− H appearing in the right-hand side of (11). For instance, one can choose

S(x, x′, p, ∆t) = p(x− x′)− H( 1
2 (x + x′), p)∆t (13)

which leads for xm p` to Weyl’s rule (2), or one can choose

S(x, x′, p, ∆t) = p(x− x′)− 1
2 (H(x, p) + H(x′, p))∆t, (14)

which leads to the symmetric rule

xm p` −→ 1
2
(x̂m p̂` + p̂` x̂m). (15)

This ambiguity shows—in an obvious way—that Feynman path integral theory does not lead to
an uniquely defined quantization scheme for observables. However—and this is the main point of the
present paper—while Cohen’s remark was mathematically justified, Kerner and Sutcliffe’s insight was
right (albeit for the wrong reason).

1.3. What We Will Do

It turns out that the Formula (10) for the approximate action that Kerner and Sutcliffe “guessed”
has been justified independently (in another context) by Makri and Miller [23,24] and the present
author [25] by rigorous mathematical methods. This formula is actually the correct approximation to
action up to order O(∆t2) (as opposed to the “midpoint rules” commonly used in the theory of the
Feynman integral which yield much cruder approximations); it follows that Kerner and Sutcliffe’s
Formula (9) indeed yields a correct approximation of the infinitesimal propagator 〈xk|e−

i
h̄ Ĥ∆t|xk−1〉,

in fact the best one for calculational purposes since it ensures a swift convergence of numerical schemes.
This is because for short times ∆t the solution of Schrödinger’s equation

ih̄
∂ψ

∂t
(x, t) =

[
n

∑
j=1

−h̄2

2mj

∂2

∂x2
j
+ V(x)

]
ψ(x, t) (16)
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with initial condition ψ(x, 0) = ψ0(x) is given by the asymptotic formula

ψ(x, ∆t) =
∫

K(x, x′, ∆t)ψ0(x′)dnx′ + O(∆t2); (17)

the approximate propagator K being defined, for arbitrary time t, by

K(x, x′, t) =
(

1
2πh̄

)n ∫
exp

(
i
h̄
[
p(x− x′)− (Hfree(p) + V(x, x′))t

])
dn p, (18)

where, by definition, Hfree(p) is the free particle Hamiltonian function, and the two-point function

V(x, x′) =
∫ 1

0
V(τx + (1− τ)x′)dτ

is the average value of the potential V on the line segment [x′, x].

• In Section 2 we discuss the accuracy of Kerner and Sutcliffe’s propagator by comparing it with the
more familiar Van Vleck propagator; we show that for small times both are approximations to
order O(t2) to the exact propagator of Schrödinger’s equation.

• In Section 3 we show that if one assume’s that short-time evolution of the wavefunction (for an
arbitrary Hamiltonian H) is given by the Kerner and Sutcliffe propagator, then H must be
quantized following the rule (12); we thereafter show that when H is a monomial xm p` then the
corresponding operator is given by the Born–Jordan rule (1), not by the Weyl rule 2.

Notation 1. The generalized position and momentum vectors are x = (x1, ..., xn) and p = (p1, ..., pn); we
set px = p1x1 + · · ·+ pnxn. We denote by x̂j the operator of multiplication by xj and by p̂j the momentum
operator −ih̄(∂/∂xj).

2. On Short-Time Propagators

In this section we only consider Hamiltonian functions of the type “kinetic energy plus potential”:

H(x, p) = Hfree(p) + V(x) , Hfree(p) =
n

∑
j=1

1
2mj

p2
j . (19)

These are the simplest physical Hamiltonians, both from a classical and a quantum perspective.

2.1. The Van Vleck Propagator

Consider a Hamiltonian function of the type (19) above; the corresponding Schrödinger equation is

ih̄
∂ψ

∂t
(x, t) =

[
n

∑
j=1

−h̄2

2mj

∂2

∂x2
j
+ V(x)

]
ψ(x, t). (20)

We will denote by K(x, x′, t) = 〈x|e− i
h̄ Ĥt|x′〉 the corresponding exact propagator:

ψ(x, t) =
∫

K(x, x′, t)ψ0(x′)dnx′ (21)

where with ψ0(x) is the value of ψ at time t = 0. The function K(x, x′, t) must thus satisfy the
boundary condition

lim
t→0

K(x, x′, t) = δ(x− x′). (22)
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It is well-known (see e.g., Gutzwiller [26], Schulman [27], de Gosson [25], Maslov and
Fedoriuk [28]) that for short times an approximate propagator is given by Van Vleck’s formula

K̃(x, x′, t) =
(

1
2πih̄

)n/2√
ρ(x, x′, t)e

i
h̄ S(x,x′ ,t) (23)

where

S(x, x′, t) =
∫ t

0

(
∑n

j=1
1
2 mj ẋj(s)2 −V(x(s)

)
ds (24)

is the action along the classical trajectory leading from x′ at time t′ = 0 to x at time t (there is no sum
over different classical trajectories because only one trajectory contributes in the limit t→ 0 [23]) and

ρ(x, x′, t) = det

(
−∂2S(x, x′, t)

∂xj∂x′jk

)
1≤j,k≤n

(25)

is the Van Vleck density of trajectories [25–27]; the argument of the square root is chosen so that
the initial condition (22) is satisfied [25,29]. It should be emphasized that although the Van Vleck
propagator is frequently used in semiclassical mechanics, it has nothing “semiclassical” per se, since it
is genuinely an approximation to the exact propagator for small t – not just in the limit h̄→ 0. In fact:

Theorem 1. Let ψ̃ be given by

ψ̃(x, t) =
∫

K̃(x, x′, t)ψ0(x′)dnx′

where ψ0 is a tempered distribution. Let ψ be the exact solution of Schrödinger’s equation with initial datum ψ0.
We have

ψ(x, t)− ψ̃(x, t) = O(t2). (26)

In particular, the Van Vleck propagator K̃(x, x′, t) is an O(t2) approximation to the exact propagator K(x, x′, t):

K(x, x′, t)− K̃(x, x′, t) = O(t2) (27)

for t→ 0 and hence
lim
t→0

K̃(x, x′, t) = δ(x− x′).

Proof. Referring to de Gosson [25] (Lemma 241) for details, we sketch the main lines in the case n = 1.
Assuming that ψ0 belongs to the Schwartz space S(Rn) of rapidly decreasing functions, one expands
the solution ψ of Schrödinger’s equation to second order:

ψ(x, t) = ψ0(x) +
∂ψ

∂t
(x, 0)t + O(t2).

Taking into account the fact that ψ is a solution of Schrödinger’s equation this can be rewritten

ψ(x, t) =

[
1 +

t
ih̄

(
− h̄2

2m
∂2

∂x2 + V(x)

)]
ψ0(x) + O(t2). (28)

Expanding the exponential eiS/h̄ in Van Vleck’s Formula (23) at t = 0 one shows, using the estimate (32)
in Theorem 2, that we also have

ψ̃(x, t) =

[
1 +

t
ih̄

(
− h̄2

2m
∂2

∂x2 + V(x)

)]
ψ0(x) + O(t2); (29)



Entropy 2018, 20, 869 6 of 15

comparison with (28) implies that ψ(x, t)− ψ̃(x, t) = O(t2). By density of the Schwartz space in the
class of tempered distributions S ′(Rn) the estimate (26) is valid if one chooses ψ0(x) = δ(x − x0),
which yields Formula (27) since we have∫

K̃(x, x′, t)δ(x− x0)dnx′ = K̃(x, x0, t)

and ∫
K(x, x′, t)δ(x− x0)dnx′ = K(x, x0, t).

Let us briefly return to the path integral. Replacing the terms 〈xk|e−
i
h̄ Ĥ∆t|xk−1〉 in the product

Formula (8) with K̃(xk−1, xk−1, ∆t) one shows, using the Lie–Trotter Formula [25,27], that the exact
propagator K(x, x′, t) = 〈x|e− i

h̄ Ĥt|x′〉 is given by

〈x|e−
i
h̄ Ĥt|x′〉 = lim

N→∞

∫
dxN−1 · · · dx1∏N

k=1K̃(xk−1, xk−1, ∆t). (30)

This formula is often taken as the starting point of path integral arguments: observing that the
expression (23) is in most cases (The free particle and the harmonic oscillator are remarkable particular
cases where the action integral can be explicitly calculated and thus yields an explicit formula for
the propagator, but mathematically speaking this fact is rather a consequence of the theory of the
metaplectic group [25,29]) difficult to calculate (it implies the computation of an action integral, which
can be quite cumbersome) people working in the theory of the Feynman integral replace the exact
action S(x, x′, t) in (23) with approximate expressions, for instance the “midpoint rules” that will be
discussed below. Now, one should be aware that this legerdemain works, because when taking the limit
N → ∞ one indeed obtains the correct propagator, but it does not imply that these midpoint rules are
accurate approximations to S(x, x′, t).

2.2. The Kerner–Sutcliffe Propagator

We showed above that the Van Vleck propagator is an approximation to order O(t2) to the exact
propagator. We now show that the propagator proposed by Kerner and Sutcliffe in [16] approximates
the Van Vleck propagator also at order O(t2). Hence

Van Vleck = Kerner–Sutcliffe + O(t2).

We begin by giving a correct short-time approximation to the action.

Theorem 2. The function S defined by

S(x, x′, t) =
n

∑
j=1

mj
(xj − x′j)

2

2t
−V(x, x′)t (31)

where V(x, x′) is the average of the potential V along the line segment [x′, x] :

V(x, x′) =
∫ 1

0
V(τx + (1− τ)x′)dτ.

satisfies for t→ 0 the estimate
S(x, x′, t)− S(x, x′, t) = O(t2). (32)

For detailed proofs we refer to the aforementioned papers [23,24] by Makri and Miller, and to
our book [25]; also see de Gosson and Hiley [30,31]. The underlying idea is quite simple (and already
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appears in germ in Park’s book [32], p. 438): one remarks that the function S = S(x, x′, t) satisfies the
Hamilton–Jacobi equation

∂S
∂t

+
n

∑
j=1

1
2mj

(
∂S
∂xj

)2

+ V(x) = 0 (33)

and one thereafter looks for an asymptotic solution

S(x, x′, t) =
1
t

S0(x, x′) + S1(x, x′)t + S2(x, x′)t2 + · · ·.

Insertion in (33) then leads to

S0(x, x′) =
n

∑
j=1

mj
(xj − x′j)

2

2

and S1(x, x′) = −V(x, x′) hence (31). Notice that this procedure actually allows one to find
approximations to S to an arbitrary order of accuracy by solving successively the equations satisfied
by S2 ,S3, ... (see [23,24] for explicit formulas).

Let us now set
H(x, x′, t) = Hfree(p) + V(x, x′)

where

V(x, x′) =
∫ 1

0
V(τx + (1− τ)x′)dτ

is the averaged potential.
Let us now show that the propagator postulated by Garrod [17] and Kerner and Sutcliffe [16] is as

good an approximation to the exact propagator as Van Vleck’s is. We recall the textbook Fourier formula(
1

2πh̄

)n ∫
e

i
h̄ p(x−x′)p`j dn p =

(
−ih̄ ∂

∂xj

)`
δ(x− x′). (34)

Theorem 3. Let K = K(x, x′, t) be defined (in the distributional sense) by

K(x, x′, t) =
(

1
2πh̄

)n ∫
e

i
h̄ (p(x−x′)−H(x,x′ ,p)t)dn p. (35)

and set
ψ(x, t) =

∫
K(x, x′, t)ψ0(x′)dnx′. (36)

Let ψ be the solution of Schrödinger’s equation with initial condition ψ0. We have

ψ(x, t)− ψ(x, t) = O(t2). (37)

The function K is an O(t2) approximation to the exact propagator K:

K(x, x′, t)− K(x, x′, t) = O(t2). (38)

Proof. It is sufficient to prove (37); Formula (38) follows by the same argument as in the proof of
Theorem 1. To simplify notation we assume again n = 1; the general case is a straightforward extension.
Expanding for small t the exponential in the integrand of (35) we have

K(x, x′, t) =
(

1
2πh̄

)n ∫
e

i
h̄ p(x−x′)(1− i

h̄
H(x, x′, p)t)dp + O(t2)

= δ(x− x′)− it
h̄

∫
e

i
h̄ p(x−x′)H(x, x′, p)dp + O(t2)
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and hence

ψ(x, t) = ψ0(x)− it
h̄

∫
e

i
h̄ p(x−x′)H(x, x′, p)ψ0(x′)dpdx′ + O(t2).

We have ∫
e

i
h̄ p(x−x′)H(x, x′, p)dn p =

∫
e

i
h̄ p(x−x′)

(
p2

2m
+ V(x, x′)

)
dp;

using the Fourier Formula (34) we get

(
1

2πh̄

)n ∫
e

i
h̄ p(x−x′) p2

2m
dp = − h̄2

2m
∂2

∂x2 δ(x− x′)

and, noting that V(x, x) = V(x),(
1

2πh̄

)n ∫
e

i
h̄ p(x−x′)V(x, x′)dp = V(x, x′)δ(x− x′)

= V(x)δ(x− x′).

Summarizing,

K(x, x′, t) = δ(x− x′) +
it
h̄

(
− h̄2

2m
∂2

∂x2 + V(x)

)
δ(x− x′) + O(t2) (39)

and hence

ψ(x, t) = ψ0(x)− it
h̄

(
− h̄2

2m
∂2

∂x2 + V(x)

)
ψ0(x) + O(t2).

Comparing this expression with (28) yields (38).

2.3. Comparison of Short-Time Propagators

We have seen above that both the Van Vleck and the Kerner–Sutcliffe propagators are accurate to
order O(t2):

K(x, x′, t)− K̃(x, x′, t) = O(t2). (40)

K(x, x′, t)− K(x, x′, t) = O(t2) (41)

and hence, of course,
K̃(x, x′, t)− K(x, x′, t) = O(t2). (42)

Let us now study the case of the most commonly approximations to the action used in the theory of
the Feynman integral, namely the mid-point rules

S1(x, x′, t, t′) =
n

∑
j=1

mj
(xj − x′j)

2

2t
− 1

2
(V(x) + V(x′))t (43)

and

S2(x, x′, t) =
n

∑
j=1

mj
(xj − x′j)

2

2t
−V( 1

2 (x + x′))∆t. (44)

We begin with a simple example, that of the harmonic oscillator

H(x, p) =
p2

2m
+

1
2

m2ω2x2
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(we are assuming n = 1). The exact value of the action is given by the generating function

S(x, x′, t) =
m

2 sin ωt
((x2 + x′2) cos ωt− 2xx′); (45)

expanding the terms sin ωt and cos ωt in Taylor series for t→ 0 yields the approximation

S(x, x′, t) = m
(x− x′)2

2t
− mω2

6
(x2 + xx′ + x′2)t + O(t2). (46)

It is easy to verify, averaging 1
2 m2ω2x2 over [x′, x] that

S(x, x′, t) = m
(x− x′)2

2t
− mω2

6
(x2 + xx′ + x′2)t

is precisely the approximate action provided by (31). If we now instead apply the midpoint rule (43)
we get

S1(x, x′, t) = m
(x− x′)2

2t
− m2ω2

4
(x2 + x′2)t

which differs from the correct value (46) by a term O(∆t). Similarly, the rule (44) yields

S2(x, x′, t) = m
(x− x′)2

2t
− m2ω2

8
(x + x′)2t

which again differs from the correct value (45) by a term O(t). It is easy to understand why it is
so by examining the case of a general potential function, and to compare V(x, x′), 1

2 (V(x) + V(x′)),
and V( 1

2 (x + x′). Consider for instance V(x, x′)−V( 1
2 (x + x′). Expanding V(x) in a Taylor series at

x = 1
2 (x + x′) we get after some easy calculations

V(x, x′) = V(x) + V′(x)(x− x′) +
1
2

V′′(x)(x− x′)2 + O((x− x′)3)

= V( 1
2 (x + x′)− 1

12 V′′( 1
2 (x + x′))(x− x′)3 + O((x− x′)3)

hence V(x, x′) − V( 1
2 (x + x′) is different from zero unless x = x′ (or if V(x) is linear) and hence

the difference between S(x, x′, t) and S2(x, x′, t) will always generate a term containing t so that
S(x, x′, t) − S2(x, x′, t) = O(t) (and not O(t2)). A similar calculation shows that we will also
always have S(x, x′, t)− S1(x, x′, t) = O(t). Denoting by K1(x, x′, t) and K2(x, x′, t) the approximate
propagators obtained from the midpoint rules (43) and (44), respectively, one checks without difficulty
that we will have

K(x, x′, t)− K1(x, x′, t) = O(t)

K(x, x′, t)− K2(x, x′, t) = O(t)

where K(x, x′, t) is the Kerner–Sutcliffe propagator (35) (in these relations we can of course replace
K(x, x′, t) with the van Vleck propagator K̃(x, x′, t) since both differ by a quantity O(t2) in view
of Theorem 3.

3. The Case of Arbitrary Hamiltonians

3.1. The Main Result

We now consider the following very general situation: We assume that we are in the presence of
a quantum system represented by a state |ψ〉 whose evolution is governed by a strongly continuous
one-parameter group (Ut) of unitary operators acting on L2(Rn); the operator Ut takes an initial
wavefunction ψ0 to ψ = Utψ0. It follows from Schwartz’s kernel theorem [33] that there exists a function
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K = K(x, x′; t) such that (This equality is sometimes postulated; it is in fact a mathematical fact which
is true in quite general situations.)

ψ(x, t) =
∫

K(x, x′; t)ψ0(x′)dnx′ (47)

and from Stone’s [34] theorem one strongly continuous one-parameter groups of unitary operators
that there exists a self-adjoint (generally unbounded) operator Ĥ on L2(Rn) such that

ψ(x, t) = e−
i
h̄ Ĥtψ0(x); (48)

equivalently ψ(x, t) satisfies the abstract Schrödinger equation (Jauch [35])

ih̄
∂ψ

∂t
(x, t) = Ĥψ(x, t). (49)

We now make the following crucial assumption, which extrapolates to the general case what we
have done for Hamiltonians of the type classical type “kinetic energy plus potential”: the quantum
dynamics is again given by the Kerner–Sutcliffe propagator (35) for small times t, i.e.,

K(x, x′, t) = K(x, x′, t) + O(t2) (50)

the approximate propagator being given by

K(x, x′, t) =
(

1
2πh̄

)n ∫
e

i
h̄ (p(x−x′)−H(x,x′)t)dn p (51)

where H is this time the averaged Hamiltonian function

H(x, x′, p) =
∫ 1

0
H(τx + (1− τ)x′, p)dτ. (52)

Obviously, when H = Hfree + V the function H reduces to the function Hfree + V considered in
Section 2.

This assumption can be motivated as follows (see de Gosson [12], Proposition 15, §4.4). Let

S(x, x′, t) =
∫

γ
pdx− Hdt

be Hamilton’s two-point function calculated along the phase space path leading from an initial
point (x′, p′, 0) to a final point (x, p, t) (the existence of such a function for small t is guaranteed
by Hamilton–Jacobi theory; see e.g., Arnol’d [36] or Goldstein [37]). That function satisfies the
Hamilton–Jacobi equation

∂S
∂t

+ H(x,∇xS) = 0.

One then shows that the function

S(x, x′, t) = p(x− x′)− H(x, x′, p)t

where p is the momentum at time t is an approximation to S(x, x′, t), in fact

S(x, x′, t)− S(x, x′, t) = O(t2).
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Here is an example: Choose H = 1
2 p2x2 (we are assuming here n = 1); then

S(x, x′, t) =
(ln(x/x′))2

2t
.

Using the formula

H(x, x′, p) =
1
6

p2(x2 + xx′ + x′2)

one shows after some calculations involving the Hamiltonian equations for H that

S(x, x′, t) =
(ln(x/x′))2

2t
+ O(t2)

(see [12], Chapter 4, Examples 10 and 16 for detailed calculations).
We are now going to show that the operator Ĥ can be explicitly and uniquely determined from

the knowledge of K(x, x′, t).

Theorem 4. If we assume that the short-time propagator is given by formula (51) then the operator Ĥ appearing
in the abstract Schrödinger Equation (49) is given by

Ĥψ(x) =
(

1
2πh̄

)n ∫
e

i
h̄ p(x−x′)H(x, x′, p)ψ(x′)dn pdnx′. (53)

Proof. Differentiating both sides of the equality (47) with respect to time we get

ih̄
∂ψ

∂t
(x, t) = ih̄

∫
∂K
∂t

(x, x′, t)ψ0(x′)dnx′;

since K itself satisfies the Schrödinger Equation (49) we thus have

Ĥψ(x, t) = ih̄
∫

∂K
∂t

(x, x′, t)ψ0(x′)dnx′.

It follows, using the assumptions (50) and (51), that

Ĥψ(x, t) = ih̄
∫

∂K
∂t

(x, x′, t)ψ0(x′)dnx′ + O(t)

and hence, letting t→ 0,

Ĥψ0(x) = ih̄
∫

∂K
∂t

(x, x′, 0)ψ0(x′)dnx′. (54)

Introducing the notation
S(x, x′, t) = p(x− x′)− H(x, x′, p)t

we have

∂K
∂t

(x, x′, t) =
(

1
2πh̄

)n i
h̄

∫
e

i
h̄ S(x,x′ ,t) ∂S

∂t
(x, x′, t)dn p′

=
(

1
2πh̄

)n 1
ih̄

∫
e

i
h̄ S(x,x′ ,t)H(x, x′, p′)dn p′.

Taking the limit t→ 0 and multiplying both sides of this equality by ih̄ we finally get

Ĥψ0(x) =
(

1
2πh̄

)n ∫
e

i
h̄ p(x−x′)H(x, x′, p′, t′)ψ0(x′)dn p′dnx′

which proves (53).
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We will call the operator Ĥ defined by (53) the Born–Jordan quantization of the Hamiltonian
function H. That this terminology is justified is motivated below.

3.2. The Case of Monomials

Let us show that (53) reduces to the usual Born–Jordan quantization rule (1) when H = xm p`

(we are thus assuming dimension n = 1). We have here

H(τx + (1− τ)x′, p) = (τx + (1− τ)x′)m p`

hence, using the binomial formula,

H(τx + (1− τ)x′, p) =
m

∑
k=0

(
m
k

)
τk(1− τ)m−kxk p`x′m−k. (55)

Integrating from 0 to 1 in τ and noting that

∫ 1

0
τk(1− τ)m−kdτ =

k!(m− k)!
(m + 1)!

we get

H(x, x′, p) =
1

m + 1

m

∑
k=0

xk p`x′m−k

and hence, using the definition (53) of Ĥ,

Ĥψ(x) =
1

2πh̄(m + 1)

m

∑
k=0

∫ ∞

−∞
e

i
h̄ p(x−x′)xk p`x′m−kψ(x′)dpdx′

=
xk

2πh̄(m + 1)

m

∑
k=0

∫ ∞

−∞

(∫ ∞

−∞
e

i
h̄ p(x−x′)p`dp

)
x′m−kψ(x′)dx′.

In view of the Fourier inversion Formula (34) we have

1
2πh̄

∫ ∞

−∞
e

i
h̄ p(x−x′)p`dp = (−ih̄)`δ(`)(x− x′) (56)

so that we finally get

Ĥψ(x) =
1

m + 1

m

∑
k=0

xk(−ih̄)`
∂`

∂x`
(xm−kψ),

which is equivalent to (1) since p̂` = (−ih̄)`∂`/∂x`.

3.3. Physical Hamiltonians

Let us now show that the Born–Jordan quantization of a physical Hamiltonian of the type

H =
n

∑
j=1

1
2mj

(pj − Aj(x))2 + V(x) (57)

coincide with the usual operator

Ĥ =
n

∑
j=1

1
2mj

(
−ih̄

∂

∂xj
− Aj(x)

)2

+ V(x) (58)
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obtained by Weyl quantization (the functions Aj and V are assumed to be C1). Since the quantizations
of p2

j , Aj(x) and V(x) are the same in all quantization schemes (they are respectively −h̄2∂2/∂x2
j

and multiplication by Aj(x) and V(x)), we only need to bother about the cross-products pj A(x).
We claim that

p̂j Aψ = − ih̄
2

[
∂

∂xj
(A←) + A

∂ψ

∂xj

]
, (59)

from which (58) immediately follows. Let us prove (59); it is sufficient to do this in the case n = 1.
Denoting by pA the Born–Jordan quantization of the function pA we have

pA(x, x′, p) = p
∫ 1

0
A(τx + (1− τ)x′)dτ = pA(x, x′)

and hence

p̂Aψ(x) =
1

2πh̄

∫
e

i
h̄ p(x−x′)pA(x, x′)ψ(x′)dx′dp

=
∫ ∞

−∞

(
1

2πh̄

∫ ∞

−∞
e

i
h̄ p(x−x′)pdp

)
A(x, x′)ψ(x′)dx′.

In view of (34) the expression between the square brackets is −ih̄δ′(x− x′) so that

p̂Aψ(x) = −ih̄
∫ ∞

−∞
δ′(x− x′)A(x, x′)ψ(x′)dx′

= −ih̄
∫ ∞

−∞
δ(x− x′)

∂

∂x′
(A(x, x′)ψ(x′))dx′

= −ih̄

(
∂A
∂x′

(x, x)ψ(x)) + A(x, x)
∂ψ

∂x′
(x))

)

Now, by definition of A(x, x′) we have A(x, x) = A(x) and

∂A
∂x′

(x, x) =
∫ 1

0
(1− τ)

∂A
∂x

(x)dτ =
1
2

∂A
∂x

(x)

and hence
p̂Aψ = − ih̄

2
∂A
∂x

ψ− ih̄A
∂ψ

∂x
which is the same thing as (59).

4. Discussion

Both Kerner and Sutcliffe, and Cohen relied on path integral arguments which were doomed to
fail because of the multiple possible choices of histories in path integration. However, it follows from
our rigorous constructions that Kerner and Sutcliffe’s insight was right, even though their construction
was not rigorously mathematically justified. While there is, as pointed out by Cohen [22], a great
latitude in choosing the short-time propagator, thus leading to different quantizations, our argument
did not make use of any path-integral argument; what we did was to propose a short-time propagator
which is exact up to order O(t2) (as opposed to those obtained by using midpoint rules), and to show
that if one use this propagator, then one must quantize Hamiltonian functions (and in particular
monomials) following the prescription proposed by Born and Jordan in the case of monomials.
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