Complexity of the Yellowstone Park Volcanic Field Seismicity in Terms of Tsallis Entropy
Abstract
1. Introduction
2. Recent Earthquake Swarms in the Yellowstone Caldera
3. Yellowstone Seismicity in Terms of Tsallis Entropy
3.1. Spatiotemporal Scaling Properties of Yellowstone Swarms
3.2. The Magnitude-Frequency Distribution
4. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Smith, R.B.; Siegel, L.J. Windows into the Earth: The Geologic Story of Yellowstone and Grand Teton National Parks; Oxford University Press: Oxford, UK, 2000. [Google Scholar]
- Christiansen, R.L. The Quaternary and Pliocene Yellowstone Plateau Volcanic field of Wyoming, Idaho, and Montana; USGS Professional Paper 729–G; USGS: Reston, VA, USA, 2001; p. 145.
- Christiansen, R.L. Late Cenozoic Volcanism of the Island Park Area, Eastern Idaho. Idaho Bur. Mines Geol. Bull. 1982, 26, 345–368. [Google Scholar]
- Christiansen, R.L. Yellowstone magmatic evolution: Its bearing on understanding large-volume explosive volcanism. In Explosive Volcanism Inception Evolution and Hazards; National Academies Press: Washington, DC, USA, 1984; pp. 84–95. [Google Scholar]
- Smith, R.B.; Sbar, M.L. Contemporary tectonics and seismicity of the Western United States with emphasis on the Intermountain Seismic Belt. Bull. Geol. Soc. Am. 1974, 85, 1205–1218. [Google Scholar] [CrossRef]
- U.S. Geological Survey. The Hebgen Lake, Montana, earthquake of August 17, 1959. US Geol. Surv. Prof. Pap. 1964, 435, 21. [Google Scholar]
- Miller, S.; Smith, B. P and S velocity structure of the Yellowstone volcanic field from local earthquake and controlled-source tomography. J. Geophys. Res. 1999, 104, 15105–15121. [Google Scholar] [CrossRef]
- Husen, S.; Smith, R.B.; Waite, G.P. Evidence for gas and magmatic sources beneath the Yellowstone volcanic field from seismic tomographic imaging. J. Volcanol. Geotherm. Res. 2004, 131, 397–410. [Google Scholar] [CrossRef]
- Christiansen, R.L.; Lowenstern, J.B.; Smith, R.B.; Heasler, H.; Morgan, L.A.; Nathenson, M.; Mastin, L.G.; Muffler, L.J.P.; Robinson, J.E. Preliminary Assessment of Volcanic and Hydrothermal Hazards in Yellowstone National Park and Vicinity; U.S. Geological Survey: Reston, VA, USA, 2007; p. 94.
- Tsallis, C. Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 1988, 52, 479–487. [Google Scholar] [CrossRef]
- Tsallis, C. Introduction to Nonextensive Statistical Mechanics: Approaching a Complex World; Springer: Berlin, Germany, 2009. [Google Scholar]
- Vallianatos, F.; Papadakis, G.; Michas, G. Generalized statistical mechanics approaches to earthquakes and tectonics. Proc. R. Soc. A Math. Phys. Eng. Sci. 2016, 472, 20160497. [Google Scholar] [CrossRef] [PubMed]
- Borges, E.P.; Roditi, I. A family of non-extensive entropies. Phys. Lett. A 1998, 246, 399–402. [Google Scholar] [CrossRef]
- Curado, E.M.F.; Nobre, F.D. Derivation of nonlinear Fokker-Planck equations by means of approximations to the master equation. Phys. Rev. E 2003, 67, 021107. [Google Scholar] [CrossRef] [PubMed]
- Kaniadakis, G.; Lissia, M.; Scarfone, A.M. Two-parameter deformations of logarithm, exponential and entropy: A consistent framework for generalized statistical mechanics. Phys. Rev. E 2005, 71, 046128. [Google Scholar] [CrossRef] [PubMed]
- Perdigão, R.A.P. Polyadic Entropy, Synergy and Redundancy among Statistically Independent Processes in Nonlinear Statistical Physics with Microphysical Codependence. Entropy 2018, 20, 26. [Google Scholar] [CrossRef]
- Schwämmle, V.; Curado, E.M.F.; Nobre, F.D. A general nonlinear Fokker-Planck equation and its associated entropy. Eur. Phys. J. B 2007, 58, 159–165. [Google Scholar] [CrossRef]
- Vallianatos, F.; Michas, G.; Papadakis, G. A description of seismicity based on non-extensive statistical physics: A review. In Earthquakes and Their Impact on Society; Springer Natural Hazard; Springer: Berlin, Germany, 2015; ISBN 978-3-319-21752-9. [Google Scholar]
- Sarlis, N.V.; Skordas, E.S.; Varotsos, P.A. Nonextensivity and natural time: The case of seismicity. Phys. Rev. E 2010, 82, 021110. [Google Scholar] [CrossRef] [PubMed]
- Papadakis, G.; Vallianatos, F.; Sammonds, P. A Nonextensive Statistical Physics Analysis of the 1995 Kobe, Japan Earthquake. Pure Appl. Geophys. 2014, 172, 1923–1931. [Google Scholar] [CrossRef]
- Papadakis, G.; Vallianatos, F.; Sammonds, P. Non-extensive statistical physics applied to heat flow and the earthquake frequency-magnitude distribution in Greece. Phys. A Stat. Mech. Appl. 2016, 456, 135–144. [Google Scholar] [CrossRef]
- Vallianatos, F.; Sammonds, P. Evidence of non-extensive statistical physics of the lithospheric instability approaching the 2004 Sumatran-Andaman and 2011 Honshu mega-earthquakes. Tectonophysics 2013, 590, 52–58. [Google Scholar] [CrossRef]
- Vallianatos, F. A non-extensive approach to risk assessment. Nat. Hazards Earth Syst. Sci. 2009, 9, 211–216. [Google Scholar] [CrossRef]
- Vallianatos, F. On the statistical physics of rockfalls: A non-extensive view. Eur. Phys. Lett. EPL 2013, 101, 10007. [Google Scholar] [CrossRef]
- Vallianatos, F.; Sammonds, P. Isplate tectonics a case of non-extensive thermodynamics? Phys. A Stat. Mech. Appl. 2010, 389, 4989–4993. [Google Scholar] [CrossRef]
- Vallianatos, F. A non-extensive statistical physics approach to the polarity reversals of the geomagnetic field. Phys. A Stat. Mech. Appl. 2011, 390, 1773–1778. [Google Scholar] [CrossRef]
- Vallianatos, F. A Non-Extensive Statistical Mechanics View on Easter Island Seamounts Volume Distribution. Geosciences 2018, 8, 52. [Google Scholar] [CrossRef]
- Vallianatos, F.; Triantis, D.; Sammonds, P. Non-extensivity of the isothermal depolarization relaxation currents in uniaxial compressed rocks. Eur. Phys. Lett. EPL 2011, 94, 68008. [Google Scholar] [CrossRef]
- Vallianatos, F. Transient Electromagnetic Method in the Keritis basin (Crete, Greece): Evidence of hierarchy in a complex geological structure in view of Tsallis distribution. Ann. Geophys. 2017, 60. [Google Scholar] [CrossRef]
- Vallianatos, F.; Sammonds, P. A non-extensive statistics of the fault-population at the Valles Marineris extensional province, Mars. Tectonophysics 2011, 509, 50–54. [Google Scholar] [CrossRef]
- Michas, G.; Vallianatos, F.; Sammonds, P. Statistical Mechanics and scaling of fault population with increasing strain in the Corinth Rift. Earth Planet. Sci. Lett. 2015, 431, 150–163. [Google Scholar] [CrossRef]
- Telesca, L. Maximum likelihood estimation of the nonextensive parameters of the earthquake cumulative magnitude distribution. Bull. Seismol. Soc. Am. 2012, 102, 886–891. [Google Scholar] [CrossRef]
- Husen, S.; Wiemer, S.; Smith, R.B. Remotely triggered seismicity in the Yellowstone National Park region by the 2002 Mw 7.9 Denali Fault earthquake, Alaska; The 2002 Denali Fault earthquake sequence. Bull. Seismol. Soc. Am. 2004, 94, 317–331. [Google Scholar] [CrossRef]
- McNutt, S. Seismic monitoring. In Encyclopedia of Volcanoes; Sigurdsson, H., Ed.; Academic Press: San Diego, CA, USA, 2000; pp. 1095–1120. [Google Scholar]
- Zobin, V. Introduction to Volcanic Seismology; Elsevier: New York, NY, USA, 2012. [Google Scholar]
- Farrell, J.; Smith, R.B.; Taira, T.; Chang, W.L.; Puskas, C.M. Dynamics and rapid migration of the energetic 2008–2009 Yellowstone Lake earthquake swarm. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef]
- Shelly, D.R.; Hill, D.P.; Massin, F.; Farrell, J.; Smith, R.B.; Taira, T. A fluid-driven earthquake swarm on the margin of the Yellowstone caldera. J. Geophys. Res. Soild Earth 2013, 118, 4872–4886. [Google Scholar] [CrossRef]
- Abe, S.; Suzuki, N. Law for the distance between successive earthquakes. J. Geophys. Res. 2003, 108. [Google Scholar] [CrossRef]
- Abe, S.; Suzuki, N. Scale-free statistics of time interval between successive earthquakes. Phys. A Stat. Mech. Appl. 2005, 350, 588–596. [Google Scholar] [CrossRef]
- Michas, G.; Vallianatos, F.; Sammonds, P. Non-extensivity and long-range correlations in the earthquake activity at the West Corinth rift (Greece). Nonlinear Process. Geophys. 2013, 20, 713–724. [Google Scholar] [CrossRef]
- Vallianatos, F.; Michas, G.; Papadakis, G.; Sammonds, P. A non-extensive statistical physics view to the spatiotemporal properties of the June 1995, Aigion earthquake (M6.2) aftershock sequence (West Corinth rift, Greece). Acta Geophys. 2012, 60, 758–768. [Google Scholar] [CrossRef]
- Chochlaki, K.; Vallianatos, F.; Michas, G. Global regionalized seismicity in view of Non-Extensive Statistical Physics. Phys. A Stat. Mech. Appl. 2018, 493, 276–285. [Google Scholar] [CrossRef]
- Sotolongo-Costa, O.; Posadas, A. Fragment-Asperity Interaction Model for Earthquakes. Phys. Rev. Lett. 2004, 92, 48501. [Google Scholar] [CrossRef] [PubMed]
- Silva, R.; Franca, G.S.; Vilar, C.S.; Alcaniz, J.S. Nonextensive models for earthquakes. Phys. Rev. E 2006, 73, 026102. [Google Scholar] [CrossRef] [PubMed]
- Kanamori, H.; Stewart, G.S. Seismological aspects of the Guatemala Earthquake of February 4, 1976. J. Geophys. Res. 1978, 83, 3427–3434. [Google Scholar] [CrossRef]
- Papadakis, G.; Vallianatos, F.; Sammonds, P. Evidence of Nonextensive Statistical Physics behavior of the Hellenic Subduction Zone seismicity. Tectonophysics 2013, 608, 1037–1048. [Google Scholar] [CrossRef]
- Telesca, L. Nonextensive analysis of seismic sequences. Phys. A Stat. Mech. Appl. 2010, 389, 1911–1914. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chochlaki, K.; Michas, G.; Vallianatos, F. Complexity of the Yellowstone Park Volcanic Field Seismicity in Terms of Tsallis Entropy. Entropy 2018, 20, 721. https://doi.org/10.3390/e20100721
Chochlaki K, Michas G, Vallianatos F. Complexity of the Yellowstone Park Volcanic Field Seismicity in Terms of Tsallis Entropy. Entropy. 2018; 20(10):721. https://doi.org/10.3390/e20100721
Chicago/Turabian StyleChochlaki, Kalliopi, Georgios Michas, and Filippos Vallianatos. 2018. "Complexity of the Yellowstone Park Volcanic Field Seismicity in Terms of Tsallis Entropy" Entropy 20, no. 10: 721. https://doi.org/10.3390/e20100721
APA StyleChochlaki, K., Michas, G., & Vallianatos, F. (2018). Complexity of the Yellowstone Park Volcanic Field Seismicity in Terms of Tsallis Entropy. Entropy, 20(10), 721. https://doi.org/10.3390/e20100721