#
The Particle as a Statistical Ensemble of Events in Stueckelberg–Horwitz–Piron Electrodynamics ^{ †}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. Classical SHP Electrodynamics

## 3. Non-Local Field Kinetics $\phantom{\rule{4pt}{0ex}}\leftrightarrow \phantom{\rule{4pt}{0ex}}$ Ensemble of Events

## 4. Maxwell Theory as an Equilibrium State of SHP

## 5. Conclusions

## Acknowledgments

## Conflicts of Interest

## References

- Stueckelberg, E.C.G. La signification du temps propre en mécanique: Ondulatoire. Helv. Phys. Acta
**1941**, 14, 321–322. (In French) [Google Scholar] - Stueckelberg, E.C.G. Remarquea propos de la création de paires de particules en théorie de relativité. Helv. Phys. Acta
**1941**, 14, 588–594. (In French) [Google Scholar] - Horwitz, L.P.; Piron, C. Relativistic Dynamics. Helv. Phys. Acta
**1973**, 48, 316–326. [Google Scholar] - Horwitz, L.P.; Lavie, Y. Scattering theory in relativistic quantum mechanics. Phys. Rev. D
**1982**, 26, 819–838. [Google Scholar] [CrossRef] - Arshansky, R.I.; Horwitz, L.P. Relativistic potential scattering and phase shift analysis. J. Math. Phys.
**1989**, 30, 213. [Google Scholar] [CrossRef] - Arshansky, R.I.; Horwitz, L.P. Covariant phase shift analysis for relativistic potential scattering. Phys. Lett. A
**1988**, 131, 222–226. [Google Scholar] [CrossRef] - Arshansky, R.I.; Horwitz, L.P. The quantum relativistic two-body bound state. I. The spectrum. J. Math. Phys.
**1989**, 30, 66. [Google Scholar] [CrossRef] - Arshansky, R.I.; Horwitz, L.P. The quantum relativistic two-body bound state. II. The induced representation of SL (2, C). J. Math. Phys.
**1989**, 30, 380. [Google Scholar] [CrossRef] - Land, M.C.; Arshansky, R.I.; Horwitz, L.P. Selection rules for dipole radiation from a relativistic bound state. Found. Phys.
**1994**, 24, 563–578. [Google Scholar] [CrossRef] - Land, M.C.; Horwitz, L.P. The Zeeman effect for the relativistic bound state. J. Phys. A Math. Gen.
**1995**, 28, 3289–3304. [Google Scholar] [CrossRef] - Land, M.C.; Horwitz, L.P. The Covariant Stark Effect. Found. Phys.
**2001**, 31, 967–991. [Google Scholar] [CrossRef] - Seidewitz, E. Avoiding Haag’s Theorem with Parameterized Quantum Field Theory. Found. Phys.
**2017**, 47, 355–374. [Google Scholar] [CrossRef] - Saad, D.; Horwitz, L.P.; Arshansky, R.I. Off-shell electromagnetism in manifestly covariant relativistic quantum mechanics. Found. Phys.
**1989**, 19, 1125–1149. [Google Scholar] [CrossRef] - Land, M.C.; Shnerb, N.; Horwitz, L.P. On Feynman’s approach to the foundations of gauge theory. J. Math. Phys.
**1995**, 36, 3263. [Google Scholar] [CrossRef] - Land, M.C.; Horwitz, L.P. Offshell quantum electrodynamics. J. Phys. Conf. Ser.
**2013**, 437, 012011. [Google Scholar] [CrossRef] - Feynman, R.P. Mathematical formulation of the quantum theory of electromagnetic interaction. Phys. Rev.
**1950**, 80, 440–457. [Google Scholar] [CrossRef] - Feynman, R.P. Space-time approach to nonrelativistic quantum mechanics. Rev. Mod. Phys.
**1948**, 20, 367–387. [Google Scholar] [CrossRef] - Horwitz, L.P.; Arshansky, R.I.; Elitzur, A.C. On the two aspects of time: The distinction and its implications. Found. Phys.
**1988**, 18, 1159–1193. [Google Scholar] [CrossRef] - Jackson, J.D. Classical Electrodynamics; Wiley: New York, NY, USA, 1975; p. 601. [Google Scholar]
- Land, M.C.; Horwitz, L.P. Green’s functions for off-shell electromagnetism and spacelike correlations. Found. Phys.
**1991**, 21, 299–310. [Google Scholar] [CrossRef] - Land, M.C. Speeds of light in Stueckelberg–Horwitz–Piron electrodynamics. In Proceedings of the International Association for Relativistic Dynamics 2016 (IARD 2016), Ljubljana, Slovenia, 6–9 June 2016. [Google Scholar]
- Land, M.C.; Horwitz, L.P. The Lorentz Force and Energy-Momentum for Off-Shell Electromagnetism. Found. Phys. Lett.
**1991**, 4, 61. [Google Scholar] [CrossRef] - Land, M.C. Mass stability in classical Stueckelberg–Horwitz–Piron electrodynamics. In Proceedings of the International Association for Relativistic Dynamics 2016 (IARD 2016), Ljubljana, Slovenia, 6–9 June 2016. [Google Scholar]
- Horwitz, L.P. A Statistical Mechanical Model for Mass Stability in the SHP Theory. arXiv, 2016; arXiv:1607.03742v2. [Google Scholar]
- Pavsic, M. Branes and Quantized Fields. Relativistic Membranes and Quantized Fields. In Proceedings of the International Association for Relativistic Dynamics 2016 (IARD 2016), Ljubljana, Slovenia, 6–9 June 2016. [Google Scholar]
- Land, M.C.; Horwitz, L.P. Field signature for apparently superluminal particle motion. J. Phys. Conf. Ser.
**2015**, 615, 012008. [Google Scholar] [CrossRef]

© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Land, M.
The Particle as a Statistical Ensemble of Events in Stueckelberg–Horwitz–Piron Electrodynamics . *Entropy* **2017**, *19*, 234.
https://doi.org/10.3390/e19050234

**AMA Style**

Land M.
The Particle as a Statistical Ensemble of Events in Stueckelberg–Horwitz–Piron Electrodynamics . *Entropy*. 2017; 19(5):234.
https://doi.org/10.3390/e19050234

**Chicago/Turabian Style**

Land, Martin.
2017. "The Particle as a Statistical Ensemble of Events in Stueckelberg–Horwitz–Piron Electrodynamics " *Entropy* 19, no. 5: 234.
https://doi.org/10.3390/e19050234