Next Article in Journal
En-LDA: An Novel Approach to Automatic Bug Report Assignment with Entropy Optimized Latent Dirichlet Allocation
Next Article in Special Issue
Nonequilibrium Phenomena in Confined Systems
Previous Article in Journal
Low Complexity List Decoding for Polar Codes with Multiple CRC Codes
Previous Article in Special Issue
Ionic Liquids Confined in Silica Ionogels: Structural, Thermal, and Dynamical Behaviors
Open AccessReview

Slow Dynamics and Structure of Supercooled Water in Confinement

Dipartimento di Matematica e Fisica, Università Roma Tre, Roma 00146, Italy
*
Author to whom correspondence should be addressed.
Academic Editors: Kevin H. Knuth, Giancarlo Franzese, Ivan Latella and Miguel Rubi
Entropy 2017, 19(4), 185; https://doi.org/10.3390/e19040185
Received: 22 November 2016 / Revised: 14 April 2017 / Accepted: 17 April 2017 / Published: 24 April 2017
(This article belongs to the Special Issue Nonequilibrium Phenomena in Confined Systems)
We review our simulation results on properties of supercooled confined water. We consider two situations: water confined in a hydrophilic pore that mimics an MCM-41 environment and water at interface with a protein. The behavior upon cooling of the α relaxation of water in both environments is well interpreted in terms of the Mode Coupling Theory of glassy dynamics. Moreover, we find a crossover from a fragile to a strong regime. We relate this crossover to the crossing of the Widom line emanating from the liquid-liquid critical point, and in confinement we connect this crossover also to a crossover of the two body excess entropy of water upon cooling. Hydration water exhibits a second, distinctly slower relaxation caused by its dynamical coupling with the protein. The crossover upon cooling of this long relaxation is related to the protein dynamics. View Full-Text
Keywords: slow dynamics; supercooled; confined water; hydration water; MCM-41; proteins slow dynamics; supercooled; confined water; hydration water; MCM-41; proteins
Show Figures

Figure 1

MDPI and ACS Style

Camisasca, G.; De Marzio, M.; Rovere, M.; Gallo, P. Slow Dynamics and Structure of Supercooled Water in Confinement. Entropy 2017, 19, 185.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop