Entropic Constitutive Relation and Modeling for Fourier and Hyperbolic Heat Conductions
Abstract
:1. Introduction
2. Entropic Constitutive Relation and Modeling
2.1. Entropic Constitutive Relation for Fourier’s Law
2.2. Entropic Constitutive Relation for Hyperbolic Heat Conduction
2.3. Modeling Based on the Entropic Constitutive Relation
3. Applicability of Generalization Based on Statistical Mechanics
4. Conclusions
- The constitutive relations in Fourier and hyperbolic heat conductions are rewritten by the entropy and entropy flux distributions. The heat conduction models are generalized through replacing macroscopic entropic quantities with BGS entropic quantities. The generalizations can avoid the debatable definition of non-equilibrium temperature, which exhibits better universality than the constitutive relations expressed by the temperature and heat flux distributions.
- The entropic constitutive relations provide a perspective for heat conduction modeling. Aanalogous to hyperbolic heat conduction, an entropic relaxation is introduced between the entropy flux and entropy gradient. In contrast with the CV model, this entropic relaxation model can avoid non-positive absolute temperature for the well-posed problems because non-positive absolute temperature will generate a singularity.
- Based on the relaxation time approximation, it is found that the applicability of the generalizations based on BGS statistical mechanics requires a sufficiently small entropy production rate. From the physical discussions and exponential decay of the macroscopic approximations, an inequality is established between the phenomenological relaxation time and the relaxation time in the Boltzmann equation, .
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Onsager, L. Reciprocal relations in irreversible processes. I. Phys. Rev. 1931, 37, 405–426. [Google Scholar] [CrossRef]
- Cattaneo, C. Sur une forme de l’équation de la chaleur éliminant le paradoxe d’une propagation instantanée. Comptes Rendus Acad. Sci. 1958, 247, 431–433. (In French) [Google Scholar]
- Vernotte, P. Les paradoxes de la théorie continue de l’équation de la chaleur. Comptes Rendus Acad. Sci. 1958, 246, 3154–3155. (In French) [Google Scholar]
- Joseph, D.D.; Preziosi, L. Heat waves. Rev. Modern Phys. 1989, 61, 41–73. [Google Scholar] [CrossRef]
- Joseph, D.D.; Preziosi, L. Addendum to the paper “Heat waves”. Rev. Modern Phys. 1990, 62, 375–391. [Google Scholar] [CrossRef]
- Tzou, D.Y. Thermal shock phenomena under high-rate response in solids. Ann. Rev. Heat Transf. 1992, 4, 111–185. [Google Scholar] [CrossRef]
- Tzou, D.Y. A unified field approach for heat conduction from macro- to micro-scales. J. Heat Transf. 1995, 117, 8–16. [Google Scholar] [CrossRef]
- Guyer, R.A.; Krumhansl, J.A. Solution of the linearized phonon Boltzmann equation. Phys. Rev. 1966, 148, 766–778. [Google Scholar] [CrossRef]
- Jou, D.; Sellitto, A.; Cimmelli, V.A. Multi-temperature mixture of phonons and electrons and nonlocal thermoelectric transport in thin layers. Int. J. Heat Mass Transf. 2014, 71, 459–468. [Google Scholar] [CrossRef]
- Hristov, J. Transient heat diffusion with a non-singular fading memory: From the Cattaneo constitutive equation with Jeffrey’s kernel to the Caputo-Fabrizio time-fractional derivative. Thermal Sci. 2016, 20, 757–762. [Google Scholar] [CrossRef]
- Hristov, J. Steady-state heat conduction in a medium with spatial non-singular fading memory: Derivation of Caputo-Fabrizio space-fractional derivative with Jeffrey’s kernel and analytical solutions. Thermal Sci. 2017, 21, 827–839. [Google Scholar] [CrossRef]
- Cao, B.Y.; Guo, Z.Y. Equation of motion of a phonon gas and non-Fourier heat conduction. J. Appl. Phys. 2007, 102, 053503. [Google Scholar] [CrossRef]
- Rosenau, P. Fast and superfast diffusion processes. Phys. Rev. Lett. 1995, 74, 1056–1059. [Google Scholar] [CrossRef] [PubMed]
- Jou, D.; Restuccia, L. Caloric and entropic temperatures in non-equilibrium steady states. Phys. A 2016, 460, 246–253. [Google Scholar] [CrossRef]
- Onsager, L. Reciprocal relations in irreversible processes. II. Phys. Rev. 1931, 38, 2265–2279. [Google Scholar] [CrossRef]
- Jou, D.; Casas-Vazquez, J.; Lebon, G. Extended Irreversible Thermodynamics; Springer: Berlin, Germany, 2010. [Google Scholar]
- Jou, D.; Cimmelli, V.A.; Sellitto, A. Nonlocal heat transport with phonons and electrons: Application to metallic nanowires. Int. J. Heat Mass Transf. 2012, 55, 2338–2344. [Google Scholar] [CrossRef]
- Tsallis, C.; Souza, A.M.C. Constructing a statistical mechanics for Beck-Cohen superstatistics. Phys. Rev. E 2003, 67, 026106. [Google Scholar] [CrossRef] [PubMed]
- Burgers, J.M. A mathematical model illustrating the theory of turbulence. Adv. Appl. Mech. 1948, 1, 171–199. [Google Scholar]
- Bertolaa, V.; Cafaro, E. On the speed of heat. Phys. Lett. A 2007, 372. [Google Scholar] [CrossRef]
- Bertolaa, V.; Cafaro, E. Diffusion phenomena and thermodynamics. Phys. Lett. A 2010, 374, 3373–3375. [Google Scholar] [CrossRef]
- Guo, Z.Y.; Hou, Q.W. Thermal wave based on the thermomass model. J. Heat Transf. 2010, 132, 072403. [Google Scholar] [CrossRef]
- Dong, Y.; Cao, B.Y.; Guo, Z.Y. Generalized heat conduction laws based on thermomass theory and phonon hydrodynamics. J. Appl. Phys. 2011, 110, 063504. [Google Scholar]
- Cole, J.D. On a quasilinear parabolic equations occurring in aerodynamics. Quart. Appl. Math. 1951, 9, 225–236. [Google Scholar] [CrossRef]
- Hopf, E. The partial differential equation ut + uux = μuxx. Comm. Pure Appl. Math. 1950, 3, 201–230. [Google Scholar] [CrossRef]
- Barletta, A.; Zanchini, E. Unsteady heat conduction by internal-energy waves in solids. Phys. Rev. B 1997, 55, 14208–14213. [Google Scholar] [CrossRef]
- Taitel, Y. On the parabolic, hyperbolic and discrete formulation of the heat conduction equation. Int. J. Heat Mass Transf. 1972, 15, 369–371. [Google Scholar] [CrossRef]
- Bai, C.; Lavine, A.S. On hyperbolic heat conduction and the second law of thermodynamics. J. Heat Transf. 1995, 117, 256–263. [Google Scholar] [CrossRef]
- Korner, C.; Bergmann, H.W. The physical defects of the hyperbolic heat conduction equation. Appl. Phys. A 1998, 67, 397–401. [Google Scholar]
- Müller, I.; Ruggeri, T. Rational Extended Thermodynamics; Springer: Berlin, Germany, 1998. [Google Scholar]
- Morro, A.; Ruggeri, T. Non-equilibrium properties of solids obtained from second-sound measurements. J. Phys. C Solid State Phys. 1988, 21, 1743–1752. [Google Scholar] [CrossRef]
- Jaynes, E.T. Information theory and statistical mechanics. Phys. Rev. 1957, 106, 620–630. [Google Scholar] [CrossRef]
- Wehrl, A. General properties of entropy. Rev. Modern Phys. 1978, 50, 221–260. [Google Scholar] [CrossRef]
- Kullback, S.; Leibler, R.A. On information and sufficiency. Ann. Math. Statist. 1951, 22, 79–86. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.-N.; Cao, B.-Y. Entropic Constitutive Relation and Modeling for Fourier and Hyperbolic Heat Conductions. Entropy 2017, 19, 644. https://doi.org/10.3390/e19120644
Li S-N, Cao B-Y. Entropic Constitutive Relation and Modeling for Fourier and Hyperbolic Heat Conductions. Entropy. 2017; 19(12):644. https://doi.org/10.3390/e19120644
Chicago/Turabian StyleLi, Shu-Nan, and Bing-Yang Cao. 2017. "Entropic Constitutive Relation and Modeling for Fourier and Hyperbolic Heat Conductions" Entropy 19, no. 12: 644. https://doi.org/10.3390/e19120644
APA StyleLi, S.-N., & Cao, B.-Y. (2017). Entropic Constitutive Relation and Modeling for Fourier and Hyperbolic Heat Conductions. Entropy, 19(12), 644. https://doi.org/10.3390/e19120644