# Spacetime Topology and the Laws of Black Hole-Soliton Mechanics

## Abstract

**:**

## 1. Introduction

## 2. Black Holes and Solitons in Five Dimensions

#### 2.1. Stationary, Biaxisymmetric Solutions

#### 2.2. The Theory and Potentials

## 3. 1st Law of Black Hole-Soliton Mechanics

#### 3.1. Soliton Spacetimes

#### 3.2. Black Holes Spacetimes Containing Solitons

**Theorem**

**1.**

#### 3.3. A Gravitational 1-Soliton Spacetime $\mathcal{M}={\mathbb{R}}^{4}\#{\mathbb{CP}}^{2}$

## 4. Discussion

## Acknowledgments

## Conflicts of Interest

## References

- Chrusciel, P.T.; Lopes Costa, J.; Heusler, M. Stationary Black Holes: Uniqueness and Beyond. Living Rev. Relativ.
**2012**, 15, 7. [Google Scholar] [CrossRef] - Bardeen, J.M.; Carter, B.; Hawking, S.W. The Four laws of black hole mechanics. Commun. Math. Phys.
**1973**, 31, 161–170. [Google Scholar] [CrossRef] - Emparan, R.; Reall, H.S. Black Holes in Higher Dimensions. Living Rev. Relativ.
**2008**, 11, 6. [Google Scholar] [CrossRef] - Hollands, S.; Ishibashi, A. Black hole uniqueness theorems in higher dimensional spacetimes. Class. Quantum Gravity
**2012**, 29, 163001. [Google Scholar] [CrossRef] - Myers, R.C.; Perry, M.J. Black Holes in Higher Dimensional Space-Times. Ann. Phys.
**1986**, 172, 304–347. [Google Scholar] [CrossRef] - Emparan, R.; Reall, H.S. A rotating black ring solution in five-dimensions. Phys. Rev. Lett.
**2002**, 88, 101101. [Google Scholar] [CrossRef] [PubMed] - Kunduri, H.K.; Lucietti, J. Supersymmetric Black Holes with Lens-Space Topology. Phys. Rev. Lett.
**2014**, 113, 211101. [Google Scholar] [CrossRef] [PubMed] - Kunduri, H.K.; Lucietti, J. Black lenses in string theory. Phys. Rev. D
**2016**, 94, 064007. [Google Scholar] [CrossRef] - Hollands, S.; Yazadjiev, S. Uniqueness theorem for 5-dimensional black holes with two axial Killing fields. Commun. Math. Phys.
**2008**, 283, 749–768. [Google Scholar] [CrossRef] - Kunduri, H.K.; Lucietti, J. The first law of soliton and black hole mechanics in five dimensions. Class. Quantum Gravity
**2014**, 31, 032001. [Google Scholar] [CrossRef] - Nedkova, P.G.; Yazadjiev, S.S. On the Thermodynamics of 5D Black Holes on ALF Gravitational Instantons. Phys. Rev. D
**2011**, 84, 124040. [Google Scholar] [CrossRef] - Gibbons, G.W. Supergravity vacua and solitons. In Duality and Supersymmetric Theories; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Friedman, J.L.; Schleich, K.; Witt, D.M. Topological censorship. Phys. Rev. Lett.
**1993**, 71, 1486. [Google Scholar] [CrossRef] [PubMed] - Ashtekar, A.; Corichi, A.; Sudarsky, D. Hairy black holes, horizon mass and solitons. Class. Quantum Gravity
**2001**, 18, 919–940. [Google Scholar] [CrossRef] - Bena, I.; Warner, N.P. Black holes, black rings and their microstates. In Supersymmetric Mechanics—Vol. 3; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Kunduri, H.K.; Lucietti, J. Black hole non-uniqueness via spacetime topology in five dimensions. J. High Energy Phys.
**2014**, 2014, 82. [Google Scholar] [CrossRef] - Gibbons, G.W.; Warner, N.P. Global structure of five-dimensional fuzzballs. Class. Quantum Gravity
**2014**, 31, 025016. [Google Scholar] [CrossRef] - Emparan, R. Rotating circular strings, and infinite nonuniqueness of black rings. J. High Energy Phys.
**2004**, 2004, 064. [Google Scholar] [CrossRef] - Copsey, K.; Horowitz, G.T. The Role of dipole charges in black hole thermodynamics. Phys. Rev. D
**2006**, 73, 024015. [Google Scholar] [CrossRef] - Gunasekaran, S.; Hussain, U.; Kunduri, H.K. Soliton mechanics. Phys. Rev. D
**2016**, 94, 124029. [Google Scholar] [CrossRef] - Townsend, P.K.; Zamaklar, M. The first law of black brane mechanics. Class. Quantum Gravity
**2001**, 18, 5269–5286. [Google Scholar] [CrossRef] - Stelea, C.; Schleich, K.; Witt, D. On squashed black holes in Godel universes. Phys. Rev. D
**2008**, 78, 124006. [Google Scholar] [CrossRef] - Yazadjiev, S.S.; Nedkova, P.G. Magnetized configurations with black holes and Kaluza-Klein bubbles: Smarr-like relations and first law. Phys. Rev. D
**2009**, 80, 024005. [Google Scholar] [CrossRef] - Ross, S.F. Non-supersymmetric asymptotically AdS
_{5}× S^{5}smooth geometries. J. High Energy Phys.**2006**, 2006. [Google Scholar] [CrossRef] - Compere, G.; Copsey, K.; de Buyl, S.; Mann, R.B. Solitons in Five Dimensional Minimal Supergravity: Local Charge, Exotic Ergoregions, and Violations of the BPS Bound. J. High Energy Phys.
**2009**, 2009, 047. [Google Scholar] [CrossRef] - Brihaye, Y.; Radu, E.; Stelea, C. Black strings with negative cosmological constant: Inclusion of electric charge and rotation. Class. Quantum Gravity
**2007**, 24, 4839–4870. [Google Scholar] [CrossRef]

© 2017 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Kunduri, H.K.
Spacetime Topology and the Laws of Black Hole-Soliton Mechanics. *Entropy* **2017**, *19*, 35.
https://doi.org/10.3390/e19010035

**AMA Style**

Kunduri HK.
Spacetime Topology and the Laws of Black Hole-Soliton Mechanics. *Entropy*. 2017; 19(1):35.
https://doi.org/10.3390/e19010035

**Chicago/Turabian Style**

Kunduri, Hari K.
2017. "Spacetime Topology and the Laws of Black Hole-Soliton Mechanics" *Entropy* 19, no. 1: 35.
https://doi.org/10.3390/e19010035