# Condensation: Passenger Not Driver in Atmospheric Thermodynamics

## Abstract

**:**

## 1. Introduction: Work, Heat, and Water

## 2. Free Energy, Convection, and Condensation

## 3. Helmholtz, Gibbs, and Generalized Free Energy

## 4. Limitations on Convectively Utilizable Free Energy: Thermodynamic Versus Hydrodynamic Utilizability

## 5. Kinetic Enhancement in a Saturated Atmosphere

## 6. Synopsis

## Acknowledgments

## Conflicts of Interest

## Appendix A. Horizontal Temperature Gradients

## Appendix B. Why Fractal Structure of Vertical Temperature Lapse Rates May Not Matter (at Least Not Much)

## Appendix C. Interpretations of Entropy

## References

- Guggenheim, E.A. Thermodynamics: An Advanced Treatment for Chemists and Physicists, 7th ed.; North-Holland: Amsterdam, The Netherlands, 1985; Chapter 1. [Google Scholar]
- Berry, R.S.; Rice, S.A.; Ross, J. Physical Chemistry, 2nd ed.; Oxford University Press: Oxford, UK, 2000; Chapters 12–19. [Google Scholar]
- Reiss, H. Methods of Thermodynamics; Blaisdell: New York, NY, USA, 1965. [Google Scholar]
- Pippard, A.B. The Elements of Classical Thermodynamics; Cambridge University Press: Cambridge, UK, 1981. [Google Scholar]
- Maham, B.M.; Myers, R.J. University Chemistry, 4th ed.; Benjamin-Cummings: Menlo Park, CA, USA, 1987; Chapter 8. [Google Scholar]
- Baierlein, R. Thermal Physics; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Schroeder, D.V. Thermal Physics; Addison Wesley Longman: San Francisco, CA, USA, 2000. [Google Scholar]
- Atkins, P.; de Paula, J. Physical Chemistry, 7th ed.; Freeman: New York, NY, USA, 2002; Chapters 2–5. [Google Scholar]
- Atkins, P.; de Paula, J. Physical Chemistry, 10th ed.; Oxford: New York, NY, USA, 2014. [Google Scholar]
- Allahverdyan, A.E.; Nieuwenhuizen, T.M. A mathematical theorem as the basis for the Second Law: Thomson’s formulation applied to equilibrium. Physica A
**2002**, 305, 542–552. [Google Scholar] [CrossRef] - Mallinckrodt, A.J.; Leff, H.S. All about work. Am. J. Phys.
**1992**, 60, 356–364. [Google Scholar] [CrossRef] - Sheehan, D.P. (Ed.) Quantum Limits to the Second Law; American Institute of Physics: Melville, NY, USA, 2002; Volume 643.
- Nikulov, A.V.; Sheehan, D.P. (Eds.) Special Issue on Quantum Limits to the Second Law of Thermodynamics. Entropy
**2004**, 6(1). - Čápek, V.; Sheehan, D.P. Challenges to the Second Law of Thermodynamics: Theory and Experiment; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Sheehan, D.P. (Ed.) The Second Law of Thermodynamics: Foundations and Status. Found. Phys.
**2007**, 37(12). [CrossRef] - Sheehan, D.P. (Ed.) Second Law of Thermodynamics: Status and Challenges; American Institute of Physics: Melville, NY, USA, 2011; Volume 1411.
- Sheehan, D.P. (Ed.) Forthcoming Special Issue of Entropy: Limits to the Second Law of Thermodynamics: Experiment and Theory.
- Tolman, R.C. Relativity, Thermodynamics, and Cosmology; Oxford University Press: Oxford, UK, 1934. [Google Scholar]
- Resnick, R.; Halliday, D.; Krane, K.S. Physics, 10th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Friction. Available online: https://en.wikipedia.org/wiki/Friction (accessed on 18 November 2016).
- Friction and Friction Coefficients. Available online: http://www.engineeringtoolbox.com/frictioncoefficients\-d_778.html (accessed on 18 November 2016).
- Rolling resistance. Available online: https://en.wikipedia.org/wiki/Rolling_resistance (accessed on 18 November 2016).
- Rolling Resistance. Available online: www.engineeringtoolbox.com/rolling-friction-resistance-d_1303.html (accessed on 18 November 2016).
- Tuck, A.F. Atmospheric Turbulence: A Molecular Dynamics Perspective; Oxford University Press: Oxford, UK, 2008; Section 3.4. [Google Scholar]
- Pauluis, O.; Held, I.M. Energy Budget of an Atmosphere in Radiative-Convective Equilibrium. Part I: Maximum Work and Frictional Dissipation. J. Atmos. Sci.
**2002**, 59, 129–139. [Google Scholar] [CrossRef] - Pauluis, O.; Held, I.M. Energy Budget of an Atmosphere in Radiative-Convective Equilibrium. Part II: Latent Heat Transport and Moist Processes. J. Atmos. Sci.
**2002**, 59, 140–149. [Google Scholar] [CrossRef] - Pauluis, O. Water Vapor and Mechanical Work: Comparison of Carnot and Steam Cycles. J. Atmos. Sci.
**2011**, 68, 91–102. [Google Scholar] [CrossRef] - Goody, R. On the Mechanical Efficiency of Deep, Tropical Convection. J. Atmos. Sci.
**2003**, 60, 2827–2832. [Google Scholar] [CrossRef] - Laliberté, F.; Zika, J.; Mudryk, L.; Kushner, P.J.; Kejellsson, J.; Döös, K. Constrained work output of the moist atmospheric heat engine in a warming climate. Science
**2015**, 347, 540–543. [Google Scholar] [CrossRef] [PubMed] - Pauluis, O. The Mean Air Flow as Lagrangian Dynamics Approximation and its Application to Moist Convection. J. Atmos. Sci.
**2015**, 73, 1–48. [Google Scholar] [CrossRef] - Emanuel, K. Divine Wind; Oxford University Press: Oxford, UK, 2005. [Google Scholar]
- Emanuel, K. Hurricanes: Tempests in a greenhouse. Physics Today
**2006**, 59, 74–75. [Google Scholar] [CrossRef] - Emanuel, K. Tropical Cyclones. Annu. Rev. Earth Planet. Sci.
**2003**, 31, 75–104. [Google Scholar] [CrossRef] - Emanuel, K.A. Thermodynamic Control of Hurricane Intensity. Nature
**1999**, 401, 665–669. [Google Scholar] [CrossRef] - Bister, M.; Emanuel, K.A. Dissipative Heating and Hurricane Intensity. Meteorol. Atmos. Phys.
**1998**, 65, 233–240. [Google Scholar] [CrossRef] - Emanuel, K. Response of tropical cyclone activity to climate change: Theoretical basis. In Hurricanes and Typhoons: Past, Present, and Future; Murnane, R.J., Liu, K.-B., Eds.; Columbia University Press: New York, NY, USA, 2004; pp. 395–407. [Google Scholar]
- Emanuel, K.A.; Speer, K.; Rotunno, R.; Srivastava, R.; Molina, M. Hypercanes: A possible link in global extinction scenarios. J. Geophys. Res.
**1995**, 100, 13755–13765. [Google Scholar] [CrossRef] - Emanuel, K.; Callaghan, J.; Otto, P. A hypothesis for the redevelopment of warm-core cyclones over Northern Australia. Mon. Weather Rev.
**2008**, 136, 3863–3872. [Google Scholar] [CrossRef] - Denur, J. The apparent “super-Carnot” efficiency of hurricanes: Nature’s steam engine versus the steam locomotive. Am. J. Phys.
**2011**, 79, 631–643. [Google Scholar] [CrossRef] - Bohren, C.F.; Albrecht, B.A. Atmospheric Thermodynamics; Oxford University Press: Oxford, UK, 1998; Section 5.6. [Google Scholar]
- Wallace, J.M.; Hobbs, P.V. Atmospheric Science, 2nd ed.; Academic Press: Amsterdam, The Netherlands, 2006; Sections 6.1 and 6.5. [Google Scholar]
- Ludlum, F.H. Clouds and Storms; The Pennsylvania State University Press: University Park, PA, USA, Chapter 5.
- Richard, E.C.; Tuck, A.F.; Aiken, K.C.; Kelly, K.K.; Herman, R.L.; Troy, R.F.; Hovde, S.J.; Rosenlof, K.H.; Thompson, T.L.; Ray, E.A. High-resolution airborne profiles of CH
_{4}, O_{3}, and water vapor near tropical Central America in late January to early February 2004. J. Goephys. Res.**2006**, 111, D13304. [Google Scholar] - Thompson, P.D.; O’Brien, R. Weather; Time-Life Books: Alexandria, VA, USA, 1980; pp. 83–84. [Google Scholar]
- Holton, J.R.; Hakin, G.J. An Introduction to Dynamic Meteorology, 5th ed.; Academic Press: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Reif, F. Fundamentals of Statistical and Thermal Physics; McGraw-Hill: New York, NY, USA, 1965. [Google Scholar]
- Apertet, Y.; Ouerdane, H.; Goupil, C.; Lecoeur, P. Efficiency at maximum power of thermally coupled heat engines. Phys. Rev. E
**2012**, 85, 041144. [Google Scholar] [CrossRef] [PubMed] - Bachhuber, C. Energy from the evaporation of water. Am. J. Phys.
**1983**, 51, 259–264. [Google Scholar] [CrossRef] - Güémez, J.; Valiente, B.; Fiolhais, C.; Fiolhais, M. Experiments with the drinking bird. Am. J. Phys.
**2003**, 71, 1257–1264. [Google Scholar] [CrossRef] - Abraham, N.; Paliffy-Muhoray, P. A dunking bird of the second kind. Am. J. Phys.
**2004**, 72, 782–785. [Google Scholar] [CrossRef] - Lorenz, R. Finite-time thermodynamics of an instrumented drinking bird toy. Am. J. Phys.
**2006**, 74, 677–682. [Google Scholar] [CrossRef] - Murrow, R.B. A Simple Heat Engine of Possible Utility in Primitive Environments. Available online: https://www.rand.org/content/dam/rand/pubs/papers/2008/P3367.pdf (accessed on 18 November 2016).
- Lear, J. New Waterbird for Egypt: A Robot Shadoof. Saturday Rev.
**1967**, 34, 49–50. [Google Scholar] - Murrow, R.B. The Research Frontier. Saturday Rev.
**1967**, 34, 51–55. [Google Scholar] - Craig, R.J. Modeling of a Thermodynamically Driven Heat Engine with Application Intended for Water Pumping. Master’s Thesis, Stellenbosch University, Stellenbosch, South Africa, December 2014. [Google Scholar]
- Chen, X.; Goodnight, D.; Gao, Z.; Cavusoglu, A.H.; Sabharwal, N.; DeLay, M.; Driks, A.; Sahin, O. Scaling up nanoscale water-driven energy conversion into evaporation-driven engines and generators. Nat. Commun.
**2015**, 6, 7346. [Google Scholar] [CrossRef] [PubMed] - Temming, M. Water, Water Everywhere. Sci. Am.
**2015**, 313, 26. [Google Scholar] [CrossRef] [PubMed] - Ornes, S. Spore Power. Discover. 2016, 37, p. 14. Available online: www.DiscoverMagazine.com/HYDRA (accessed on 18 November 2016).
- Houghton, J. The Physics of Atmospheres, 3rd ed.; Cambridge University Press: Cambridge, UK, 2002; Section 1.5. [Google Scholar]
- Ives, R.L. Behaviour of dust devils. Bull. Am. Meteorol. Soc.
**1947**, 28, 168–174. [Google Scholar] - Williams, N.R. Development of dust-whirls and similar small-scale vortices. Bull. Am. Meteorol. Soc.
**1948**, 29, 105–117. [Google Scholar] - Sinclair, P.C. Some preliminary dust-devil measurements. Mon. Weather Rev.
**1964**, 92, 363–367. [Google Scholar] [CrossRef] - Malkus, J.S. Interchange of properties between sea and air: Large-scale interactions. In The Sea; Interscience: London, UK, 1962; Volume 1, p. 205. [Google Scholar]
- Curzon, F.L.; Ahlborn, B. Efficiency of a Carnot engine at maximum power output. Am. J. Phys.
**1975**, 43, 22–24. [Google Scholar] [CrossRef] - Callen, H.C. Thermodynamics and an Introduction to Thermostatistics; John Wiley & Sons: Hoboken, NY, USA, 1985. [Google Scholar]
- Vaudrey, A.; Lanzetta, F.; Feidt, M.H.B. Reitlinger and the origins of the efficiency at maximum power formula for heat engines. J. Non-Equilib. Thermodyn.
**2014**, 39, 199–203. [Google Scholar] [CrossRef] - Endoreversible Thermodynamics. Available online: https://en.wikipedia.org/wiki/Endoreversible_thermodynamics (accessed on 18 November 2016).
- De Vos, A. Efficiency of some engines at maximum-power conditions. Am. J. Phys.
**1985**, 53, 570–573. [Google Scholar] [CrossRef] - Gordon, J.M. Maximum power point characteristics of heat engines as a general thermodynamic problem. Am. J. Phys.
**1989**, 57, 1136–1142. [Google Scholar] [CrossRef] - Gordon, J.M. Observations on efficiency of heat engines operating at maximum power. Am. J. Phys.
**1990**, 58, 370–375. [Google Scholar] [CrossRef] - Schmiedl, T.; Seifert, U. Efficiency at maximum power: An analytically solvable model for stochastic heat engines. Eurphys. Lett.
**2008**, 81, 20003. [Google Scholar] [CrossRef] - Tu, Z.C. Efficiency at maximum power of Feynman’s ratchet as an engine. J. Phys. A
**2008**, 41, 312003. [Google Scholar] [CrossRef] - Leff, H.F. Thermal efficiency at maximum work output: New results for old heat engines. Am. J. Phys.
**1987**, 55, 602–610. [Google Scholar] [CrossRef] - Epstein, L.C. Thinking Physics: Understanding Practical Reality, 3rd ed.; Insight Press: San Francisco, CA, USA, 1999. [Google Scholar]
- Lovejoy, S.; Tuck, A.F.; Hovde, S.J.; Schertzer, D. Do Stable Atmospheric Layers Exist? Geophys. Res. Lett.
**2008**, 35, L032122. [Google Scholar] [CrossRef] - Tuck, A.F. Review Article: From Molecules to Meteorology Via Turbulent Scale Invariance. Q. J. R. Meteorol. Soc.
**2010**, 136, 1125–1144. [Google Scholar] [CrossRef] - Tuck, A.F. Correction to: ‘From Molecules to Meteorology Via Turbulent Scale Invariance’. Q. J. R. Meteorol. Soc.
**2011**, 137, 275. [Google Scholar] - Tuck, A.F. Synoptic and Chemical Evolution of the Antarctic Vortex in Late Winter and Early Spring, 1987. J. Geophys. Res.
**1989**, 94, 11687–11737. [Google Scholar] [CrossRef] - Tuck, A.F. Correction to “Synoptic and Chemical Evolution of the Antarctic Vortex in Late Winter and Early Spring, 1987” by A. F. Tuck. J. Geophys. Res.
**1989**, 94, 16855–16856. [Google Scholar] [CrossRef] - Ramaswamy, V.; Hurrell, J.W.; Meehl, G.A.; Phillips, A.; Santer, B.D.; Schwarzkopf, M.D.; Seidel, D.J.; Sherwood, S.C.; Thorne, P.W. Temperature Trends in the Lower Atmosphere. Available online: www.gfdl.noaa.gov/bibliography/related_files/vr0603.pdf (accessed on 18 November 2016).
- Dunn, G.; Miller, B.I. Atlantic Hurricanes; Louisiana State University Press: Baton Rouge, LA, USA, 1964. [Google Scholar]
- Callen, H.B. Thermodynamics; John Wiley & Sons: Hoboken, NY, USA, 1960. [Google Scholar]

© 2016 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Denur, J. Condensation: Passenger Not Driver in Atmospheric Thermodynamics. *Entropy* **2016**, *18*, 417.
https://doi.org/10.3390/e18120417

**AMA Style**

Denur J. Condensation: Passenger Not Driver in Atmospheric Thermodynamics. *Entropy*. 2016; 18(12):417.
https://doi.org/10.3390/e18120417

**Chicago/Turabian Style**

Denur, Jack. 2016. "Condensation: Passenger Not Driver in Atmospheric Thermodynamics" *Entropy* 18, no. 12: 417.
https://doi.org/10.3390/e18120417