# Cloud Entropy Management System Involving a Fractional Power

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Formal Algorithm

## 3. Findings

- (i)
- A solution exists;
- (ii)
- The solution is unique;
- (iii)
- The solution’s behavior changes continuously with the initial conditions.

#### 3.1. Uniqueness

**Theorem 3.1.**

**Proof.**

**Theorem 3.2.**

**Proof.**

#### 3.2. Exact Solution

**Theorem 3.3.**

## 4. Applications

α | Timeof Receiption | Demand (Service Load) | Number of Agents |
---|---|---|---|

1 | 90.1 | 30 | 1 |

163.1 | 35 | 3 | |

285.4 | 42 | 4 | |

365.7 | 35 | 3 | |

467.7 | 30 | 2 | |

0.75 | 90.1 | 27.57 | 1 |

163.1 | 32.165 | 3 | |

285.4 | 38.6 | 4 | |

365.7 | 32.165 | 3 | |

467.7 | 27.57 | 2 | |

0.5 | 90.1 | 26.58 | 1 |

163.1 | 31.01 | 3 | |

285.4 | 37.212 | 4 | |

365.7 | 31.01 | 3 | |

467.7 | 26.58 | 2 |

## 5. Discussion

## 6. Conclusions

## Acknowledgments

## Author Contributions

## Conflicts of Interest

## References

- Olfati-Saber, R.; Fax, A.; Murray, R.M. Consensus and cooperation in networked multi-agent systems. Proc. IEEE
**2007**, 95, 215–233. [Google Scholar] [CrossRef] - Xie, D.; Wang, S. Consensus of second-order discrete-time multi-agent systems with fixed topology. J. Math. Anal. Appl.
**2012**, 387, 8–16. [Google Scholar] [CrossRef] - Ma, Q.; Wang, Z.; Miao, G. Second-order group consensus for multi-agent systems via pinning leader-following approach. J. Frankl. Inst.
**2014**, 351, 1288–1300. [Google Scholar] [CrossRef] - Meng, D.; Jia, Y.; Du, J. Nonlinear finite-time bipartite consensus protocol for multi-agent systems associated with signed graphs. Int. J. Control
**2015**, 88. [Google Scholar] [CrossRef] - Chu, H.; Cai, Y.; Zhang, W. Consensus tracking for multi-agent systems with directed graph via distributed adaptive protocol. Neurocomputing
**2015**, 166, 8–13. [Google Scholar] [CrossRef] - Baillie, R.T. Long memory processes and fractional integration in econometrics. J. Econ.
**1996**, 73, 5–59. [Google Scholar] [CrossRef] - Machado, J.A.T.; Mata, M.E. Pseudo phase plane and fractional calculus modeling of western global economic downturn. Commun. Nonlinear Sci. Numer. Simul.
**2015**, 22, 396–406. [Google Scholar] [CrossRef] - Machado, J.A.T.; Mata, M.E. A fractional perspective to the bond graph modelling of world economies. Nonlinear Dyn.
**2014**, 80, 1839–1852. [Google Scholar] [CrossRef] - Diaz, J.B.; Osler, T.J. Differences of fractional order. Math. Comput.
**1974**, 28, 185–202. [Google Scholar] [CrossRef] - Gray, H.L.; Zhang, N.F. On a new definition of the fractional difference. Math. Comput.
**1988**, 50, 513–529. [Google Scholar] [CrossRef] - Atici, F.; Eloe, P. Initial value problems in discrete fractional calculus. Proc. Am. Math. Soc.
**2009**, 137, 981–989. [Google Scholar] - Ibrahim, R.W.; Jalab, H.A. Discrete boundary value problem based on the fractional gâteaux derivative. Bound. Value Probl.
**2015**, 2015. [Google Scholar] [CrossRef] - Ibrahim, R.W.; Jalab, H.A. Existence of a class of fractional difference equations with two point boundary value problem. Adv. Differ. Equ.
**2015**, 2015. [Google Scholar] [CrossRef] - Olfati-Saber, R.; Murray, R.M. Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Autom. Control
**2004**, 49, 1520–1533. [Google Scholar] [CrossRef] - Mohan, J.J.; Deekshitulu, G.V.S.R. Fractional order difference equations. Int. J. Differ. Equ.
**2012**, 2012, 780619. [Google Scholar] [CrossRef] - Tsallis, C. Introduction to Nonextensive Statistical Mechanics; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Mathai, A.M.; Haubold, H.J. On a generalized entropy measure leading to the pathway model with a preliminary application to solar neutrino data. Entropy
**2013**, 15, 4011–4025. [Google Scholar] [CrossRef] - Machado, J.A.T. Fractional order generalized information. Entropy
**2014**, 16, 2350–2361. [Google Scholar] [CrossRef] - Ibrahim, R.W.; Jalab, H.A. Existence of entropy solutions for nonsymmetric fractional systems. Entropy
**2014**, 16, 4911–4922. [Google Scholar] [CrossRef] - Ibrahim, R.W.; Jalab, H.A. Existence of Ulam stability for iterative fractional differential equations based on fractional entropy. Entropy
**2015**, 17, 3172–3181. [Google Scholar] [CrossRef] - Ibrahim, R.W.; Moghaddasi, Z.; Jalab, H.A.; Noor, R.M. Fractional differential texture descriptors based on the machado entropy for image splicing detection. Entropy
**2015**, 17, 4775–4785. [Google Scholar] [CrossRef] - Kerrigan, B.; Chen, Y. A Study of Entropy Sources in Cloud Computers: Random Number Generation on Cloud Hosts; Springer: Berlin, Germany, 2012. [Google Scholar]
- Jiang, R.; Liao, H.; Yang, M.; Li, C. A decision-making method for selecting cloud computing service based on information entropy. Int. J. Grid Distrib. Comput.
**2015**, 8, 225–262. [Google Scholar] [CrossRef] - Whaiduzzaman, M.; Sookhak, M.; Gani, A.; Buyya, R. A survey on vehicular cloud computing. J. Netw. Comput. Appl.
**2014**, 40, 325–344. [Google Scholar] [CrossRef] - Preciado, V.M.; Verghese, G.C. Synchronization in Generalized Erd ö s-R é nyi Networks of Nonlinear Oscillators. In Proceedings of the 44th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC ‘05), Seville, Spain, 12–15 December 2005; pp. 4628–4633.
- Salih, Y.K.; See, O.H.; Ibrahim, R.W.; Yussof, S.; Iqbal, A. A user-centric game selection model based on user preferences for the selection of the best heterogeneous wireless network. Ann. Telecommun.
**2015**, 70, 239–248. [Google Scholar] [CrossRef]

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Ibrahim, R.W.; Jalab, H.A.; Gani, A.
Cloud Entropy Management System Involving a Fractional Power. *Entropy* **2016**, *18*, 14.
https://doi.org/10.3390/e18010014

**AMA Style**

Ibrahim RW, Jalab HA, Gani A.
Cloud Entropy Management System Involving a Fractional Power. *Entropy*. 2016; 18(1):14.
https://doi.org/10.3390/e18010014

**Chicago/Turabian Style**

Ibrahim, Rabha W., Hamid A. Jalab, and Abdullah Gani.
2016. "Cloud Entropy Management System Involving a Fractional Power" *Entropy* 18, no. 1: 14.
https://doi.org/10.3390/e18010014