# Gaussian Network’s Dynamics Reflected into Geometric Entropy

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Statistical Models and Network Complexity Measure

## 3. Network Dynamics

## 4. Trivariate Dynamical Networks: Results and Discussions

**Figure 1.**Geometric entropy ${\tilde{\mathcal{S}}}_{t}$ of the dynamical network model when the initial state is a fully-disconnected network (magenta line) and when it is a fully-connected network (blue line).

**Figure 2.**Geometric entropy ${\tilde{\mathcal{S}}}_{t}$ of the dynamical network model when the initial state has two links (magenta line) and when it has one link (blue line).

## 5. Conclusions

## Acknowledgments

## Author Contributions

## Conflicts of Interest

## References

- Newman, M.E.J. The structure and function of complex networks. Siam Rev.
**2003**, 45, 167–256. [Google Scholar] [CrossRef] - Simonyi, G. Graph Entropy: A Survey. In Combinatorial Optimization; DIMACS Series in Discrete Mathematics and Theoretical Computer Science; Cook, W., Lovasz, L., Seymour, P., Eds.; American Mathematical Society: Providence, RI, USA, 1995; Volume 20, p. 399. [Google Scholar]
- Borgatti, S.P.; Mehra, A.; Brass, D.J.; Labianca, G. Network Analysis in the Social Sciences. Science
**2009**, 323, 892–895. [Google Scholar] [CrossRef] [PubMed] - Albert, R.; Barabasi, A.-L. Statistical Mechanics of Complex Networks. Rev. Mod. Phys.
**2002**, 74, 47–97. [Google Scholar] [CrossRef] - Bianconi, G. Entropy of network ensembles. Phys. Rev. E
**2009**, 79, 036114. [Google Scholar] [CrossRef] - Bianconi, G. The entropy of randomized network ensembles. Europhys. Lett.
**2008**, 81, 28005. [Google Scholar] [CrossRef] - Amari, S.; Nagaoka, H. Methods of Information Geometry; Oxford University Press: Oxford, UK, 2000. [Google Scholar]
- Felice, D.; Mancini, S.; Pettini, M. Quantifying Networks Complexity from Information Geometry Viewpoint. J. Math. Phys.
**2014**, 55, 043505. [Google Scholar] [CrossRef] - Strogatz, S.H. Exploring complex networks. Nature
**2001**, 410, 268–276. [Google Scholar] [CrossRef] [PubMed] - Bilgin, C.C.; Yener, B. Dynamic Network Evolution: Models, Clustering, Anomaly Detection. Available online: https://www.cs.rpi.edu/research/pdf/08-08.pdf (accessed on 4 August 2015).
- Dorogovtsev, S.N.; Goltsev, A.V. Critical phenomena in complex networks. Rev. Mod. Phys.
**2008**, 80, 1275–1335. [Google Scholar] [CrossRef] - Da Prato, G.; Zabczyk, J. Stochastic Equations in Infinite Dimensions; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Cafaro, C. Works on an information geometrodynamical approach to chaos. Chaos Solitons Fractals
**2009**, 41, 886–891. [Google Scholar] [CrossRef] - Pettini, M. Geometry and Topology in Hamiltonian Dynamics and Statistical Mechanics; Springer: New York, NY, USA, 2007. [Google Scholar]
- Leibbrandt, G. Introduction to the technique of dimensional regularization. Rev. Mod. Phys.
**1975**, 47, 849–876. [Google Scholar] [CrossRef] - Grytskyy, D.; Tetzlaff, T.; Diesmann, M.; Helias, M. A unified view on weakly correlated recurrent networks. 2013; arXiv:1304.7945. [Google Scholar]
- Felice, D.; Cafaro, C.; Mancini, S. Information geometric complexity of a trivariate Gaussian statistical model. Entropy
**2014**, 16, 2944–2958. [Google Scholar] [CrossRef] - Franzosi, R.; Felice, D.; Mancini, S.; Pettini, M. A geometric entropy measuring networks complexity. 2014; arXiv:1410.5459. [Google Scholar]
- Barzel, B.; Barabási, A.-L. Universality in networks dynamics. Nature
**2013**, 9, 673–681. [Google Scholar]

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Felice, D.; Mancini, S.
Gaussian Network’s Dynamics Reflected into Geometric Entropy. *Entropy* **2015**, *17*, 5660-5672.
https://doi.org/10.3390/e17085660

**AMA Style**

Felice D, Mancini S.
Gaussian Network’s Dynamics Reflected into Geometric Entropy. *Entropy*. 2015; 17(8):5660-5672.
https://doi.org/10.3390/e17085660

**Chicago/Turabian Style**

Felice, Domenico, and Stefano Mancini.
2015. "Gaussian Network’s Dynamics Reflected into Geometric Entropy" *Entropy* 17, no. 8: 5660-5672.
https://doi.org/10.3390/e17085660