Optimization of the Changing Phase Fluid in a Carnot Type Engine for the Recovery of a Given Waste Heat Source
Abstract
:1. Introduction




2. General Endoreversible Carnot Engine Model
2.1. Assumptions and Balances
2.2. Exogenous Optimization

3. Changing Phase Carnot Engine
3.1. Evolution of the Latent Heat of Vaporization with the Temperature

| Substance | Molecular formula | Physical data | Approximation data | ||||
|---|---|---|---|---|---|---|---|
| TC (K) | TC (K) | (J/kg) | value | (%) | (%) | ||
| R125 | 339 | 173 | 1.90 × 105 | 2.6 | 2.2 | 0.5 | |
| R143a | 346 | 161 | 2.67 × 105 | 2.6 | 1.6 | 0.4 | |
| R32 | 351 | 136 | 4.63 × 105 | 2.6 | 2.7 | 0.5 | |
| R22 | 369 | 116 | 3.03 × 105 | 2.5 | 2.2 | 1.1 | |
| propane | 370 | 86 | 5.63 × 105 | 2.6 | 1.7 | 1 | |
| R134a | 374 | 170 | 2.63 × 105 | 2.5 | 3.0 | 0.6 | |
| R227ea | 375 | 146 | 1.75 × 105 | 2.5 | 2.3 | 1.6 | |
| R152a | 386 | 155 | 4.06 × 105 | 2.5 | 1.7 | 0.6 | |
| ammonia | 405 | 195 | 1.48 × 106 | 2.6 | 4.4 | 1.4 | |
| isobutane | 408 | 114 | 4.81 × 105 | 2.6 | 1.5 | 0.7 | |
| butane | 425 | 135 | 4.96 × 105 | 2.6 | 1.3 | 0.7 | |
| R245fa | 427 | 171 | 2.59 × 105 | 2.3 | 16 | 3 | |
| R123 | 457 | 166 | 2.24 × 105 | 2.4 | 8.9 | 1.8 | |
| acetone | 508 | 179 | 6.49 × 105 | 2.4 | 5 | 1 | |
| cyclopentane | 512 | 180 | 4.87 × 105 | 2.5 | 25 | 2.2 | |
| cyclohexane | 554 | 279 | 4.04 × 105 | 2.5 | 1.5 | 0.7 | |
| benzene | 562 | 279 | 4.48 × 105 | 2.5 | 1.2 | 0.6 | |
| toluene | 592 | 178 | 4.92 × 105 | 2.3 | 5.8 | 2.2 | |
| decane | 618 | 244 | 3.93 × 105 | 2.3 | 2.7 | 1.4 | |
| water | 647 | 273 | 2.50 × 106 | 2.9 | 12 | 1.7 | |







3.2. Endogenous Optimization

3.2.1. Temperature Equal to the Ambient Temperature

| Substance | TL imposed at 300 K | PL imposed at 1 × 105 Pa | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| TL (=T0) | PL | PH | TL | PL (=P0) | PH | |||||
| R125 | 300 | 1.45 × 106 | 327 ± 2 | 2.80 × 106 | 1.9 | 225 | 1 × 105 | 300 ± 1 | 1.46 × 106 | 15 |
| R143a | 300 | 1.32 × 106 | 332 ± 1 | 2.81 × 106 | 2.1 | 226 | 1 × 105 | 305 ± 1 | 1.49 × 106 | 15 |
| R32 | 300 | 1.77 × 106 | 335 ± 1 | 4.17 × 106 | 2.4 | 221 | 1 × 105 | 306 ± 1 | 2.08 × 106 | 21 |
| R22 | 300 | 1.10 × 106 | 347 ± 1 | 3.27 × 106 | 3 | 232 | 1 × 105 | 320 ± 1 | 1.83 × 106 | 18 |
| propane | 300 | 9.98 × 105 | 348 ± 1 | 2.86 × 106 | 2.9 | 231 | 1 × 105 | 321 ± 1 | 1.65 × 106 | 16 |
| R134a | 300 | 7.03 × 105 | 351 ± 1 | 2.49 × 106 | 3.6 | 247 | 1 × 105 | 330 ± 1 | 1.55 × 106 | 16 |
| R227ea | 300 | 4.81 × 105 | 351 ± 1 | 1.77 × 106 | 3.7 | 257 | 1 × 105 | 334 ± 1 | 1.21 × 106 | 12 |
| R152a | 300 | 6.30 × 105 | 358 ± 1 | 2.65 × 106 | 4.2 | 249 | 1 × 105 | 339 ± 1 | 1.72 × 106 | 17 |
| ammonia | 300 | 1.06 × 106 | 371 ± 1 | 6.04 × 106 | 5.7 | 240 | 1 × 105 | 346 ± 1 | 3.55 × 106 | 35 |
| isobutane | 300 | 3.70 × 105 | 372 ± 1 | 1.98 × 106 | 5.4 | 261 | 1 × 105 | 357 ± 1 | 1.46 × 106 | 15 |
| butane | 300 | 2.58 × 105 | 383 ± 1 | 1.87 × 106 | 7.3 | 272 | 1 × 105 | 372 ± 1 | 1.51 × 106 | 15 |
| R245fa | 300 | 1.59 × 105 | 382 ± 1 | 1.55 × 106 | 10 | 288 | 1 × 105 | 377 ± 1 | 1.39 × 106 | 14 |
| R123 | 300 | 9.78 × 104 | 401 ± 1 | 1.41 × 106 | 14 | 301 | 1 × 105 | 401 ± 1 | 1.42 × 106 | 14 |
| acetone | 300 | 3.33 × 104 | 432 ± 1 | 1.31 × 106 | 39 | 329 | 1 × 105 | 444 ± 1 | 1.68 × 106 | 17 |
| cyclopentane | 300 | 4.55 × 104 | 434 ± 1 | 1.44 × 106 | 32 | 322 | 1 × 105 | 444 ± 1 | 1.71 × 106 | 17 |
| cyclohexane | 300 | 1.41 × 104 | 458 ± 1 | 1.04 × 106 | 74 | 353 | 1 × 105 | 483 ± 1 | 1.56 × 106 | 16 |
| benzene | 300 | 1.38 × 104 | 462 ± 1 | 1.20 × 106 | 87 | 353 | 1 × 105 | 488 ± 1 | 1.80 × 106 | 18 |
| toluene | 300 | 4.18 × 103 | 473 ± 1 | 7.67 × 106 | 184 | 383 | 1 × 105 | 515 ± 1 | 1.50 × 106 | 15 |
| decane | 300 | 2.07 × 102 | 492 ± 1 | 2.49 × 106 | 1202 | 447 | 1 × 105 | 558 ± 1 | 8.90 × 106 | 8.9 |
| water | 300 | 3.54 × 103 | 507 ± 1 | 3.62 × 106 | 1023 | 373 | 1 × 105 | 554 ± 1 | 6.51 × 106 | 65 |
3.2.2. Pressure Equal to the Ambient Pressure

4. Endogenous and Exogenous Optimization of a Carnot Engine


| Substance | TL imposed at 300 K | PL imposed at 1 × 105 Pa | ||||
|---|---|---|---|---|---|---|
| R125 | 327 ± 2 | 358 | 0.280 | 300 ± 1 | 401 | 0.589 |
| R143a | 332 ± 1 | 368 | 0.323 | 305 ± 1 | 412 | 0.635 |
| R32 | 335 ± 1 | 376 | 0.368 | 306 ± 1 | 424 | 0.713 |
| R22 | 347 ± 1 | 402 | 0.487 | 320 ± 1 | 443 | 0.786 |
| propane | 348 ± 1 | 404 | 0.504 | 321 ± 1 | 448 | 0.830 |
| R134a | 351 ± 1 | 410 | 0.467 | 330 ± 1 | 441 | 0.681 |
| R227ea | 351 ± 1 | 411 | 0.491 | 334 ± 1 | 436 | 0.675 |
| R152a | 358 ± 1 | 430 | 0.538 | 339 ± 1 | 462 | 0.756 |
| ammonia | 371 ± 1 | 460 | 0.593 | 346 ± 1 | 500 | 0.835 |
| isobutane | 372 ± 1 | 464 | 0.686 | 357 ± 1 | 489 | 0.863 |
| butane | 383 ± 1 | 491 | 0.757 | 372 ± 1 | 509 | 0.880 |
| R245fa | 384 ± 1 | 488 | 0.736 | 377 ± 1 | 494 | 0.783 |
| R123 | 402 ± 1 | 537 | 0.890 | 402 ± 1 | 537 | 0.888 |
| acetone | 432 ± 1 | 617 | 1.14 | 444 ± 1 | 598 | 1.02 |
| cyclopentane | 434 ± 1 | 628 | 1.16 | 445 ± 1 | 615 | 1.06 |
| cyclohexane | 458 ± 1 | 698 | 1.22 | 483 ± 1 | 660 | 1.01 |
| benzene | 462 ± 1 | 712 | 1.26 | 488 ± 1 | 674 | 1.06 |
| toluene | 478 ± 1 | 750 | 1.57 | 516 ± 1 | 694 | 1.22 |
| decane | 492 ± 1 | 788 | 1.59 | 558 ± 1 | 696 | 1.02 |
| water | 507 ± 1 | 893 | 1.80 | 554 ± 1 | 824 | 1.45 |
5. Conclusion
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Carnot, S. Réflexions sur la puissance motrice du feu et sur les machines propres à développer cette puissance; Bachelier: Paris, France, 1824. (in French) [Google Scholar]
- Curzon, F.L.; Ahlborn, B. Efficiency of a Carnot engine at maximum power output. Am. J. Phys. 1975, 1, 22–24. [Google Scholar] [CrossRef]
- Novikov, I. The efficiency of atomic power stations (a review). J. Nucl. Energy 1958, 7, 125–128. [Google Scholar] [CrossRef]
- Chambadal, P. Le choix du cycle thermique dans une usine génératrice nucléaire. Revue Générale de l'Electricité 1958, 67, 332–345. (in French). [Google Scholar]
- Vaudrey, A.; Lanzetta, F.; Feidt, M.H.B. Reitlinger and the origins of the efficiency at maximum power formula for heat engines. J. Non-equilib. Thermodyn. 2014, 39, 199–203. [Google Scholar] [CrossRef]
- Moreau, M.; Gaveau, B.; Schuman, S. Stochastic dynamics, efficiency and sustainable power production. Eur. Phys. J. D 2011, 62, 67–71. [Google Scholar] [CrossRef]
- Yvon, J. The Saclay reactor: Two years experience on heat transfer by means of compressed gas. In Proceedings of the International Conference on Peaceful Uses of Atomic Energy, Geneva, Switzerland, 8–20 August 1955.
- Andresen, B. Finite-Time Thermodynamics; Physics Laboratory II, University of Copenhague: Copenhague, Denmark, 1983. [Google Scholar]
- Feidt, M.; Costea, M.; Petre, C.; Petrescu, S. Optimization of the direct Carnot cycle. Appl. Therm. Eng. 2007, 27, 829–839. [Google Scholar] [CrossRef]
- Chen, J.; Yan, Z.; Lin, G.; Andresen, B. On the Curzon–Ahlborn efficiency and its connection with the efficiencies of real heat engines. Energy Convers. Manag. 2001, 42, 173–181. [Google Scholar] [CrossRef]
- Kodal, A.; Sahin, B.; Yilmaz, T. A comparative performance analysis of irreversible Carnot heat engines under maximum power density and maximum power conditions. Energy Convers. Manag. 2000, 41, 235–248. [Google Scholar] [CrossRef]
- Agnew, B.; Anderson, A.; Forst, T.H. Optimization of a steady state flow Carnot cycle with external irreversibilities for maximum specific output. Appl. Therm. Eng. 1997, 17, 3–15. [Google Scholar] [CrossRef]
- Feidt, M. Thermodynamique Optimale en Dimensions Physiques Finies; Lavoisier: Paris, France, 2013. [Google Scholar]
- Tchanche, B.F.; Papadakis, G.; Lambrinos, G.; Frangoudakis, A. Fluid selection for a low-temperature solar organic Rankine cycle. Appl. Therm. Eng. 2009, 29, 2468–2476. [Google Scholar] [CrossRef]
- Chen, H.; Goswami, D.Y.; Stefanakos, E.K. A review of thermodynamic cycles and working fluids for the conversion of low-grade heat. Renew. Sustain. Energy Rev. 2010, 14, 3059–3067. [Google Scholar] [CrossRef]
- Hung, T.C.; Wang, S.K.; Kuo, C.H.; Pei, B.S.; Tsai, K.F. A study of organic working fluids on system efficiency of an ORC using low-grade energy sources. Energy 2010, 35, 1403–1411. [Google Scholar] [CrossRef]
- Badr, O.; Probert, S.D.; O’Callaghan, P.W. Selecting a working fluid for a Rankine-cycle engine. Appl. Energy 1985, 21, 1–42. [Google Scholar]
- Liu, B.-T.; Chien, K.-H.; Wang, C.C. Effect of working fluids on organic Rankine cycle for waste heat recovery. Energy 2004, 29, 1207–1217. [Google Scholar] [CrossRef]
- West, H.H.; Patton, J.M. Selection of working fluids for the organic Rankine cycle. In Proceedings of the First Industrial Energy Technology Conference, Houston, TX, USA, 22–25 April 1979; pp. 953–959.
- Le, V.L.; Feidt, M.; Kheiri, A.; Pelloux-Prayer, S. Performance optimization of low-temperature power generation by supercritical ORCs (Organic Rankine Cycles) using low GWP (Global Warming Potential) working fluids. Energy 2014, 67, 513–526. [Google Scholar]
- De Witt, B.; Hugo, R. Naturally-Forced Slug Flow Expander for Application in a Waste-Heat Recovery Cycle. Energies 2014, 7, 7223–7244. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blaise, M.; Feidt, M.; Maillet, D. Optimization of the Changing Phase Fluid in a Carnot Type Engine for the Recovery of a Given Waste Heat Source. Entropy 2015, 17, 5503-5521. https://doi.org/10.3390/e17085503
Blaise M, Feidt M, Maillet D. Optimization of the Changing Phase Fluid in a Carnot Type Engine for the Recovery of a Given Waste Heat Source. Entropy. 2015; 17(8):5503-5521. https://doi.org/10.3390/e17085503
Chicago/Turabian StyleBlaise, Mathilde, Michel Feidt, and Denis Maillet. 2015. "Optimization of the Changing Phase Fluid in a Carnot Type Engine for the Recovery of a Given Waste Heat Source" Entropy 17, no. 8: 5503-5521. https://doi.org/10.3390/e17085503
APA StyleBlaise, M., Feidt, M., & Maillet, D. (2015). Optimization of the Changing Phase Fluid in a Carnot Type Engine for the Recovery of a Given Waste Heat Source. Entropy, 17(8), 5503-5521. https://doi.org/10.3390/e17085503
