Kolmogorov Complexity Based Information Measures Applied to the Analysis of Different River Flow Regimes
Abstract
:1. Introduction
2. Information Measures Based on the Kolmogorov Complexity
2.1. Kolmogorov Complexity
- Step 1: Encode the time series by constructing a sequence S of the characters 0 and 1 written as{s(i)},i =1,2,3,4,…, N, according to the rule:
- Step 2: Calculate the complexity counter c(N). The c(N) is defined as the minimum number of distinct patterns contained in a given character sequence [24]. The complexity counter c(N) is a function of the length of the sequence N. The value of c(N) is approaching an ultimate value b(N) as N approaching infinite, i.e.,:
- Step 3: Calculate the normalized information measure Ck(N), which is defined as:
2.2. Information Measures Based on the Kolmogorov Complexity
2.2.1. The Kolmogorov Complexity Spectrum
2.2.2. The Overall Kolmogorov Complexity Information Measure
3. Datasets and Computations
3.1. Short Description of River Locations and Time Series
3.2. Computation of Information Measures for Seven River Flow Time Series
4. Results and Discussion
4.1. The Lower (KCL), Upper (KCU) Kolomogorov Complexity and Kolmogorov Complexity Spectrum Highest Value (KCM)
4.2. The Kolmogorov Complexity Spectrum
4.3. The Overall Kolmogorov Complexity Information Measure
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Schertzer, D.; Tchiguirinskaia, I.; Lovejoy, S.; Hubert, P.; Bendjoudi, H.; Larchevesque, M. Discussion of “Evidence of chaos in rainfall-runoff process”. Which chaos in rainfall-runoff process? Hydrol. Sci. J 2002, 47, 139–149. [Google Scholar]
- Salas, J.D.; Kim, H.S.; Eykholt, R.; Burlando, P.; Green, T.R. Aggregation and sampling in deterministic chaos: implications for chaos identification in hydrological processes. Nonlinear Proc. Geoph 2005, 12, 557–567. [Google Scholar]
- Zunino, L.; Soriano, M.C.; Rosso, O.A. Distinguishing chaotic and stochastic dynamics from time series by using a multiscale symbolic approach. Phys. Rev. E 2012, 86, 046210. [Google Scholar]
- Mihailović, D.T.; Nikolić-Djorić, E.; Drešković, N.; Mimić, G. Complexity analysis of the turbulent environmental fluid flow time series. Physica A 2014, 395, 96–104. [Google Scholar]
- Weijs, S.V.; van de Giesen, N.; Parlange, M.B. HydroZIP: How hydrological knowledge can be used to improve compression of hydrological data. Entropy 2013, 15, 1289–1310. [Google Scholar]
- Weijs, S.V.; van de Giesen, N.; Parlange, M.B. Data compression to define information content of hydrological time series. Hydrol. Earth Syst. Sc 2013, 17, 3171–3187. [Google Scholar]
- Lange, H.; Rosso, O.A.; Hauhs, M. Ordinal patterns and statistical complexity analysis of daily stream flow time series. Eur. Phys. J. ST 2013, 222, 535–552. [Google Scholar]
- Serinaldi, F.; Zunino, L.; Rosso, O.A. Complexity—entropy analysis of daily stream flow time series in the continental United States. Stoch. Env. Res. Risk A 2014, 28, 1685–1708. [Google Scholar]
- Andriani, P.; McKelveyll, B. From Gaussian to Paretian Thinking: Causes and Implications of Power Laws in Organizations. Organ. Sci 2009, 20, 1053–1071. [Google Scholar]
- Thompson, M.; Young, L. The complexities of measuring complexity. Presented at IMP Conference, Rome, Italy; 2012. Available online: http://www.impgroup.org/uploads/papers/7846.pdf accessed on 7 May 2015.
- Weisberg, S. Applied Linear Regression, 3rd ed; Wiley: Hoboken, NJ, USA, 2005; p. 305. [Google Scholar]
- Shalizi, C.R. Estimating Distributions and Densities. Available online: http://www.stat.cmu.edu/~cshalizi/350/lectures/28/lecture-28.pdf accessed on 7 May 2015.
- Otache, Y.M.; Sadeeq, M.A.; Ahaneku, I.E. ARMA modelling of Benue river flow dynamics: Comparative study of par model. Open J. Modern Hydrol 2011, 1, 1–9. [Google Scholar]
- Li, M.; Vitanyi, P. An Introduction to Kolmogorov Complexity and its Applications, 2nd ed; Springer: Berlin, Germany, 1997; p. 188. [Google Scholar]
- Lempel, A.; Ziv, J. On the complexity of finite sequences. IEEE Trans. Inf. Theory 1976, 22, 75–81. [Google Scholar]
- Mihailović, D.T.; Mimić, G.; Nikolić-Djorić, E.; Arsenić, I. Novel measures based on the Kolmogorov complexity for use in complex system behavior studies and time series analysis. Open Phys 2015, 13, 1–14. [Google Scholar]
- Feldman, D.P.; Crutchfeld, J.P. Measures of Statistical Complexity: Why? Phys. Lett. A 1998, 238, 244–252. [Google Scholar]
- Kolmogorov, A. Logical basis for information theory and probability theory. IEEE Trans. Inf. Theory 1968, IT-14, 662–664. [Google Scholar]
- Cerra, D.; Datcu, M. Algorithmic relative complexity. Entropy 2011, 13, 902–914. [Google Scholar]
- Kaspar, F.; Schuster, H.G. Easily calculable measure for the complexity of spatiotemporal patterns. Phys. Rev. A 1987, 36, 842–848. [Google Scholar]
- Zhang, X.S.; Roy, R.J.; Jensen, E.W. EEG complexity as a measure of depth of anesthesia of patients. IEEE Trans. Biomed. Eng 2001, 48, 1424–1433. [Google Scholar]
- Radhakrishnan, N.; Wilson, J.D.; Loizou, P.C. An alternative partitioning technique to quantify the regularity of complex time series. Int. J. Bifurcation Chaos 2000, 10, 1773–1779. [Google Scholar]
- Small, M. Applied Nonlinear Time Series Analysis: Applications in Physics, Physiology and Finance; World Scientific: Singapore, Singapore, 2005; p. 245. [Google Scholar]
- Ferenets, R.; Lipping, T.; Anier, A. Comparison of entropy and complexity measures for the assessment of depth of sedation. IEEE Trans. Biomed. Eng 2006, 53, 1067–1077. [Google Scholar]
- Hu, J.; Gao, J.; Principe, J.C. Analysis of biomedical signals by the Lempel–Ziv complexity: the effect of finite data size. IEEE Trans. Biomed. Eng 2006, 53, 2606–2609. [Google Scholar]
- Thai, Q. calc_lz_complexity: Calculates the Lempel-Ziv Complexity of binary sequence—a measure of its “randomness”. Available online: http://www.mathworks.com/matlabcentral/fileexchange/38211-calclzcomplexity accessed on 15 December 2014.
- Meybeck, M.; Green, P.; Vorosmarty, C. A new typology for mountains and other relief classes: An application to global continental water resources and population distribution. Mt. Res. Dev 2001, 21, 34–45. [Google Scholar]
- Salas, J.D.; Kim, H.S.; Eykholt, R.; Burlando, P.; Green, T.R. Aggregation and sampling in deterministic chaos: Implications for chaos identification in hydrological processes. Nonlinear Process. Geophys 2005, 12, 557–567. [Google Scholar]
- Hajian, S.; SadeghMovahed, M. Multifractal detrended cross-correlation analysis of sunspot numbers and river flow fluctuations. Physica A 2010, 389, 4942–4957. [Google Scholar]
Catchment | Number | Abbreviation | Longitude (°E) | Latitude (°N) | Altitude (m) | FR (m3/s) | FRmax(m3/s) | FRmin (m3/s) | Regime |
---|---|---|---|---|---|---|---|---|---|
River Neretva to Zitomislić | 1 | NER_Z | 17°47′ | 43°12′ | 16 | 252.0 | 734.0 | 53.0 | L |
River Neretva to Ulog | 2 | NER_U | 18°14′ | 43°25′ | 641 | 8.0 | 35.3 | 0.5 | M |
River Bosna to Doboj | 3 | BOS_D | 18°16′ | 43°49′ | 137 | 172.0 | 650.0 | 30.0 | L |
River Bosna to Reljevo | 4 | BOS_R | 18°06′ | 44°44′ | 500 | 29.0 | 99.5 | 4.8 | M |
River Drina to Kozluk | 5 | DRI_K | 19°07′ | 44°30′ | 121 | 380.0 | 1160.0 | 66.0 | L |
River Drina to Bastasi | 6 | DRI_B | 18°46′ | 43°27′ | 425 | 155.0 | 497.0 | 32.7 | H |
River Miljacka to Sarajevo | 7 | MIL_S | 18°21′ | 43°12′ | 530 | 5.0 | 21.9 | 0.6 | M |
River Una to Martin Brod | 8 | UNA_B | 16°07′ | 43°30′ | 310 | 54.0 | 188.0 | 9.2 | H |
River Ukrina to Derventa | 9 | UKR_D | 17°55′ | 44°50′ | 105 | 17.0 | 92.3 | 1.1 | L |
River Vrbas to Delibašino Selo | 10 | VRB_S | 18°16′ | 43°49′ | 141 | 111.0 | 358.0 | 38.2 | L |
Catchment | Number | Regime | Abb. | KCL | KCU | KCM | KCO |
---|---|---|---|---|---|---|---|
River Neretva to Zitomislić | 1 | L | NER_Z 0.918 3.799 0.948 0.506 | ||||
River Neretva to Ulog | 2 | M | NER_U | 1.013 | 3.309 | 1.013 | 0.529 |
River Bosna to Doboj | 3 | L | BOS_D | 0.791 | 3.277 | 0.886 | 0.470 |
River Bosna to Reljevo | 4 | M | BOS_R | 0.948 | 4.092 | 0.981 | 0.538 |
River Drina to Kozluk | 5 | L | DRI_K | 0.823 | 3.213 | 0.981 | 0.502 |
River Drina to Bastasi | 6 | H | DRI_B | 0.948 | 3.605 | 1.045 | 0.529 |
River Miljacka to Sarajevo | 7 | M | MIL_S | 1.076 | 4.194 | 1.077 | 0.558 |
River Una to Martin Brod | 8 | H | UNA_B | 0.948 | 4.227 | 1.045 | 0.540 |
River Ukrina to Derventa | 9 | L | UKR_D | 0.981 | 4.294 | 1.013 | 0.479 |
River Vrbas to Delibašino Selo | 10 | L | VRB_S | 0.918 | 4.324 | 0.918 | 0.486 |
© 2015 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mihailović, D.T.; Mimić, G.; Drešković, N.; Arsenić, I. Kolmogorov Complexity Based Information Measures Applied to the Analysis of Different River Flow Regimes. Entropy 2015, 17, 2973-2987. https://doi.org/10.3390/e17052973
Mihailović DT, Mimić G, Drešković N, Arsenić I. Kolmogorov Complexity Based Information Measures Applied to the Analysis of Different River Flow Regimes. Entropy. 2015; 17(5):2973-2987. https://doi.org/10.3390/e17052973
Chicago/Turabian StyleMihailović, Dragutin T., Gordan Mimić, Nusret Drešković, and Ilija Arsenić. 2015. "Kolmogorov Complexity Based Information Measures Applied to the Analysis of Different River Flow Regimes" Entropy 17, no. 5: 2973-2987. https://doi.org/10.3390/e17052973
APA StyleMihailović, D. T., Mimić, G., Drešković, N., & Arsenić, I. (2015). Kolmogorov Complexity Based Information Measures Applied to the Analysis of Different River Flow Regimes. Entropy, 17(5), 2973-2987. https://doi.org/10.3390/e17052973