# A Novel Method for PD Feature Extraction of Power Cable with Renyi Entropy

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Shannon Wavelet Singular Entropy

#### 2.1. The Definition of Shannon Wavelet Singular Entropy

#### 2.2. The Limitation of Shannon Wavelet Singular Entropy

## 3. Renyi Wavelet Packet Singular Entropy

#### 3.1. The Definition of Renyi Entropy

#### 3.2. The Statistical Properties of Renyi Entropy

**Figure 1.**Relation between Renyi entropy with different values of $\alpha $ and the probability distribution: (

**a**) $\alpha =0.1$; (

**b**) $\alpha =0.5$; (

**c**) $\alpha =0.99$; (

**d**) $\alpha =2$.

#### 3.3. The Definition of Renyi Wavelet Packet Singular Entropy

## 4. The Application of RWPSE in PD Detection

#### 4.1. The Collection of the PD Signal of a Cable Using HFCT

Model | Cable core | Cross-sectional area | Insulation layer | Metal sheath | The voltage rating |
---|---|---|---|---|---|

YJLW_{03} | Copper splicing wire | 800 mm² | XLPE | Aluminum | 127 kV/220 kV |

**Figure 4.**Partial discharge (PD) detection process. (

**a**) Working principle diagram of the high-frequency current transformer (HFCT); (

**b**) Schematic diagram of the PD detection system.

#### 4.2. The Feature Extraction of the PD Signal with RWPSE

**Figure 8.**Performance comparison of feature extraction between Renyi wavelet packet singular entropy (RWPSE) and Shannon wavelet singular entropy (SWSE): (

**a**) RWPSE; (

**b**) SWSE.

#### 4.3. Analysis of Experimental Results

## 5. Conclusions

## Acknowledgments

## Author Contributions

## Conflicts of Interest

## References

- Liu, Q.; Wang, Z.P.; Zheng, Z.H. Application of wavelet singular entropy theory in transient protection and accelerated trip of transmission line protection. Autom. Electr. Power Syst.
**2009**, 33, 79–83. [Google Scholar] - Zhang, Y.D.; Dong, Z.C.; Wang, S.H.; Ji, G.L.; Yang, J.Q. Preclinical diagnosis of Magnetic Resonance (MR) brain images via discrete wavelet packet transform with Tsallis entropy and generalized eigenvalue proximal support vector machine. Entropy
**2015**, 17, 1795–1813. [Google Scholar] [CrossRef] - Chen, X.G.; Liu, D.; Xu, G.H.; Jiang, K.S.; Liang, L. Application of wavelet packet entropy flow manifold learning in bearing factory inspection using the ultrasonic technique. Entropy
**2015**, 15, 341–351. [Google Scholar] [CrossRef] [PubMed] - Pavle, B.; Dani, J. Fault detection of mechanical drives under variable operating conditions based on wavelet packet Renyi entropy signatures. Mech. Syst. Signal Process.
**2012**, 31, 369–381. [Google Scholar] [CrossRef] - Xing, Y.F.; Wang, Y.S.; Shi, L.; Guo, H.; Chen, H. Sound quality recognition using optimal wavelet-packet transform and artificial neural network methods. Mech. Syst. Signal Process.
**2016**, 66–67, 875–892. [Google Scholar] [CrossRef] - Fatemeh, S.; Shyamala, D.; Azreen, A.; Azrul, J.; Asri, R.A.R. Multi-level basis selection of wavelet packet decomposition tree for heart sound classification. Comput. Biol. Med.
**2013**, 43, 1407–1414. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Banu, G.; Huseyin, H.; Ahmet, M.K. Wavelet packet based analysis of sound fields in rooms using coincident microphone arrays. Appl. Acoust.
**2007**, 68, 778–796. [Google Scholar] [CrossRef] - Eui, Y.K.; Young, J.L.; Sang, K.L. Heath monitoring of a glass transfer robot in the mass production line of liquid crystal display using abnormal operating sounds based on wavelet packet transform and artificial neural network. J. Sound Vib.
**2012**, 331, 3412–3427. [Google Scholar] [CrossRef] - Wang, Z.S.; Shaoru, B.; Lei, M.; Zhao, C.G.; Liu, Y.; Zhao, Z.F. Feature extraction and classification of load dynamic characteristics based on lifting wavelet packet transform in power system load modeling. Int. J. Electr. Power Energy Syst.
**2014**, 62, 353–363. [Google Scholar] [CrossRef] - Walid, G.M.; El-Hawary, M.E. A new reactive, distortion and non-active power measurement method for nonstationary waveforms using wavelet packet transform. Electr. Power Syst. Res.
**2009**, 79, 1408–1415. [Google Scholar] [CrossRef] - Liu, Z.G.; Yan, C.; Wen, H.L. Combined power quality disturbances recognition using wavelet packet entropies and s-transform. Entropy
**2015**, 17, 5811–5828. [Google Scholar] [CrossRef] - Chen, J.K.; Li, G.Q. Tsallis wavelet entropy and its application in power singal analysis. Entropy
**2014**, 16, 3009–3025. [Google Scholar] [CrossRef] - He, Z.Y.; Liu, Z.G.; Qian, Q.Q. Study on wavelet entropy theory and adaptability of its application in power system. Power Syst. Technol.
**2004**, 28, 17–21. [Google Scholar] - Divjot, K.T.; Sonika, J. A semi blind DWT-SVD video watermarking. Proced. Comput. Sci.
**2015**, 46, 1661–1667. [Google Scholar] [CrossRef] - Bagci, G.B. The validity of the third law of thermodynamics for the Renyi and homogeneous entropies. Physica A
**2015**, 437, 405–407. [Google Scholar] [CrossRef]

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Chen, J.; Dou, Y.; Wang, Z.; Li, G.
A Novel Method for PD Feature Extraction of Power Cable with Renyi Entropy. *Entropy* **2015**, *17*, 7698-7712.
https://doi.org/10.3390/e17117698

**AMA Style**

Chen J, Dou Y, Wang Z, Li G.
A Novel Method for PD Feature Extraction of Power Cable with Renyi Entropy. *Entropy*. 2015; 17(11):7698-7712.
https://doi.org/10.3390/e17117698

**Chicago/Turabian Style**

Chen, Jikai, Yanhui Dou, Zhenhao Wang, and Guoqing Li.
2015. "A Novel Method for PD Feature Extraction of Power Cable with Renyi Entropy" *Entropy* 17, no. 11: 7698-7712.
https://doi.org/10.3390/e17117698