# Information Geometric Complexity of a Trivariate Gaussian Statistical Model

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Statistical Models and Information Geometry Complexity

## 3. The Gaussian Statistical Model

#### 3.1. The monovariate Gaussian Statistical Model

#### 3.1.1. Case 1

#### 3.1.2. Case 2

#### 3.1.3. Case 3

#### 3.2. Bivariate Gaussian Statistical Model

#### 3.3. Trivariate Gaussian Statistical Model

#### 3.3.1. Case 1

#### 3.3.2. Case 2

#### 3.3.3. Case 3

**Figure 1.**Ratio $R\left(\rho \right)$ of volumes vs. degree of correlations ρ. Solid line refers to ${R}_{\mathrm{bivariat}}^{\mathrm{strong}}\left(\rho \right)$; Dotted line refers to ${R}_{\mathrm{trivariate}}^{\mathrm{weak}}\left(\rho \right)$; Dashed line referes to ${R}_{\mathrm{trivariate}}^{\text{mildweak}}\left(\rho \right)$; Dash-dotted refers to ${R}_{\mathrm{trivariate}}^{\mathrm{strong}}\left(\rho \right)$.

## 4. Concluding Remarks

## Acknowledgements

## Author Contributions

## Conflicts of Interest

## References

- Feldman, D.F.; Crutchfield, J.P. Measures of Statistical Complexity: Why? Phys. Lett. A
**1998**, 238, 244–252. [Google Scholar] [CrossRef] - Kolmogorov, A.N. A new metric invariant of transitive dynamical systems and of automorphism of Lebesgue spaces. Doklady Akademii Nauk SSSR
**1958**, 119, 861–864. [Google Scholar] - Caticha, A. Entropic Dynamics. In Bayesian Inference and Maximum Entropy Methods in Science and Engineering, the 22nd International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering, Moscow, Idaho, 3–7 August 2002; Fry, R.L., Ed.; American Institute of Physics: College Park, MD, USA, 2002; Volume 617, p. 302. [Google Scholar]
- Caticha, A.; Preuss, R. Maximum entropy and Bayesian data analysis: Entropic prior distributions. Phys. Rev. E
**2004**, 70, 046127. [Google Scholar] [CrossRef] [PubMed] - Amari, S.; Nagaoka, H. Methods of Information Geometry; Oxford University Press: New York, NY, USA, 2000. [Google Scholar]
- Cafaro, C. Works on an information geometrodynamical approach to chaos. Chaos Solitons Fractals
**2009**, 41, 886–891. [Google Scholar] [CrossRef] - Pettini, M. Geometry and Topology in Hamiltonian Dynamics and Statistical Mechanics; Springer-Verlag: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Lebowitz, J.L. Microscopic Dynamics and Macroscopic Laws. Ann. N. Y. Acad. Sci.
**1981**, 373, 220–233. [Google Scholar] [CrossRef] - Shibata, T.; Chawanya, T.; Chawanya, K. Noiseless Collective Motion out of Noisy Chaos. Phys. Rev. Lett.
**1999**, 82. [Google Scholar] [CrossRef] - Ali, S.A.; Cafaro, C.; Kim, D.-H.; Mancini, S. The effect of the microscopic correlations on the information geometric complexity of Gaussian statistical models. Physica A
**2010**, 389, 3117–3127. [Google Scholar] [CrossRef] - Sadoc, J.F.; Mosseri, R. Geometrical Frustration; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Lee, J.M. Riemannian Manifolds: An Introduction to Curvature; Springer: New York, NY, USA, 1997. [Google Scholar]
- Do Carmo, M.P. Riemannian Geometry; Springer: New York, NY, USA, 1992. [Google Scholar]
- Cafaro, C.; Ali, S.A. Jacobi fields on statistical manifolds of negative curvature. Physica D
**2007**, 234, 70–80. [Google Scholar] [CrossRef] - Cafaro, C.; Giffin, A.; Ali, S.A.; Kim, D.-H. Reexamination of an information geometric construction of entropic indicators of complexity. Appl. Math. Comput.
**2010**, 217, 2944–2951. [Google Scholar] [CrossRef] - Cafaro, C.; Mancini, S. Quantifying the complexity of geodesic paths on curved statistical manifolds through information geometric entropies and Jacobi fields. Physica D
**2011**, 240, 607–618. [Google Scholar] [CrossRef] - Felice, D.; Mancini, S.; Pettini, M. Quantifying Networks Complexity from Information Geometry Viewpoint. J. Math. Phys.
**2014**, 55, 043505. [Google Scholar] [CrossRef] - Moessner, R.; Ramirez, A.P. Geometrical Frustration. Phys. Today
**2006**, 59, 24–29. [Google Scholar] [CrossRef] - MacKay, D.J.C. Information Theory, Inference, and Learning Algorithms; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Brudno, A.A. The complexity of the trajectories of a dynamical system. Uspekhi Mat. Nauk
**1978**, 33, 207–208. [Google Scholar] [CrossRef] - Alekseev, V.M.; Yacobson, M.V. Symbolic dynamics and hyperbolic dynamic systems. Phys. Rep.
**1981**, 75, 290–325. [Google Scholar] [CrossRef] - Myung, J.; Balasubramanian, V.; Pitt, M.A. Counting probability distributions: differential geometry and model selection. Proc. Natl. Acad. Sci. USA
**2000**, 97, 11170. [Google Scholar] [CrossRef] [PubMed] - Rodriguez, C.C. The volume of bitnets. AIP Conf. Proc.
**2004**, 735, 555–564. [Google Scholar] - Motter, A.E.; Albert, R. Networks in motion. Phys. Today
**2012**, 65, 43–48. [Google Scholar] [CrossRef]

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).

## Share and Cite

**MDPI and ACS Style**

Felice, D.; Cafaro, C.; Mancini, S.
Information Geometric Complexity of a Trivariate Gaussian Statistical Model. *Entropy* **2014**, *16*, 2944-2958.
https://doi.org/10.3390/e16062944

**AMA Style**

Felice D, Cafaro C, Mancini S.
Information Geometric Complexity of a Trivariate Gaussian Statistical Model. *Entropy*. 2014; 16(6):2944-2958.
https://doi.org/10.3390/e16062944

**Chicago/Turabian Style**

Felice, Domenico, Carlo Cafaro, and Stefano Mancini.
2014. "Information Geometric Complexity of a Trivariate Gaussian Statistical Model" *Entropy* 16, no. 6: 2944-2958.
https://doi.org/10.3390/e16062944