# Comparing Surface and Mid-Tropospheric CO2 Concentrations from Central U.S. Grasslands

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Methods

#### 2.1. Grassland Sites

Site | Features | Data | |||||
---|---|---|---|---|---|---|---|

Dominant Veg | Topography | Management | Missing Values (%) | RMSE (ppmv) | RMSE* (ppmv) | ||

KFS | C${}_{3}$ grass/forbs | upland | 5yBurn | 18.57 | 12.9 | 13.9 | |

KZU | C${}_{4}$ grass | upland | 1yBurn | 6.43 | 18.9 | 18.8 | |

K4B | C${}_{4}$ grass/C${}_{3}$ forbs | lowland | 4yBurn | 5.16 | 13.9 | 14.2 |

#### 2.2. Eddy Covariance Towers

#### 2.3. Atmospheric Infrared Sounder

#### 2.4. Relative Entropy and Wavelet Multi-resolution Analysis

## 3. Results

**Figure 1.**Time series of surface EC tower and mid-tropospheric AIRS observations of CO${}_{2}$ concentration from 2007 to 2010 over (

**a**) KFS; (

**b**) KZU; and (

**c**) K4B. In all panels, the black line indicates the weekly mean of the EC time series and the dark gray line indicates the weekly mean of the AIRS tower time series.

**Figure 2.**Correlations of (

**a**) AIRS time series with wavelet decomposed versions of EC time series; (

**b**) EC time series with wavelet decomposed versions of AIRS time series; and (

**c**) wavelet decomposed versions of EC with wavelet decomposed versions of AIRS. Though wavelets are decomposed to ten temporal scales, only nine (corresponding to 2, 4, 8, 16, 32, 64, 128, 256, and 512 days) are shown here.

**Figure 3.**Relative entropy of (

**a**) AIRS time series with wavelet decomposed versions of EC time series; (

**b**) EC time series with wavelet decomposed versions of AIRS time series; (

**c**) wavelet decomposed versions of AIRS with wavelet decomposed versions of EC; and (

**d**) wavelet decomposed versions of EC with wavelet decomposed versions of AIRS. Lower relative entropy corresponds to less divergence or greater similarity between time series.

## 4. Discussion

## 5. Conclusions

## Acknowledgements

## References

- Chahine, M.T.; Chen, L.; Dimotakis, P.; Jiang, X.; Li, Q.; Olsen, E.T.; Pagano, T.; Randerson, J.; Yung, Y.L. Satellite remote sounding of mid-tropospheric CO
_{2}. Geophys. Res. Lett.**2008**, 35, L17807. [Google Scholar] [CrossRef] - Jiang, X.; Chahine, M.T.; Olsen, E.T.; Chen, L.L.; Yung, Y.L. Interannual variability of mid-tropospheric CO
_{2}from Atmospheric Infrared Sounder. Geophys. Res. Lett.**2010**, 37, L13801. [Google Scholar] - Li, K.-F.; Tian, B.; Waliser, D.; Yung, Y.L. Tropical Mid-Tropospheric CO
_{2}variability driven by the Madden-Julian oscillation. Proc. Natl. Acad. Sci. USA**2010**. [Google Scholar] [CrossRef] [PubMed] - Ruddell, B.L.; Kumar, P. Ecohydrologic process networks: 1. Identification. Water Resour. Res.
**2009**, 45, W03419. [Google Scholar] [CrossRef] - Keppel-Aleks, G.; Wennberg, P.O.; Washenfelder, R.A.; Wunch, D.; Schneider, T.; Toon, G.C.; Andres, R.J.; Blavier, J.F.; Connor, B.; Davis, K.J.; et al. The imprint of surface fluxes and transport on variations in total column carbon dioxide. Biogeosciences
**2012**, 9, 875–891. [Google Scholar] [CrossRef][Green Version] - Cotton, W.R.; Alexander, G.D.; Hertenstein, R.; Walko, R.L.; McAnelly, R.L.; Nicholls, M. Cloud venting-a review and some new global annual estimates. Earth-Sci. Rev.
**1995**, 39, 169–206. [Google Scholar] [CrossRef] - Kowol-Santen, J.; Beekman, M.; Schmitgen, S.; Dewey, K. Tracer analysis of transport from the boundary layer to the free troposphere. Geophys. Res. Lett.
**2001**, 28, 2907–2910. [Google Scholar] [CrossRef] - Sinclair, V.A.; Gray, S.L.; Belcher, S.E. Boundary-layer ventilation by baroclinic life cycles. Q. J. R. Meteorol. Soc.
**2008**, 134, 1409–1424. [Google Scholar] [CrossRef] - Sinclair, V.A.; Belcher, S.E.; Gray, S.L. Synoptic controls on boundary-layer characteristics. Bound-Lay. Meteorol.
**2010**, 134, 387–409. [Google Scholar] [CrossRef] - Gimson, N.R. Pollution transport by convective clouds in a mesoscale model. Q. J. R. Meteorol. Soc.
**1997**, 123, 1805–1828. [Google Scholar] [CrossRef] - Dacrew, H.F.; Gray, S.L.; Belcher, S.E. A case study of boundary-layer ventilation by convection and coastal processes. J. Geophys. Res.
**2007**. [Google Scholar] [CrossRef] - Fritsch, J.M.; Kane, R.J.; Chelius, C.R. Contribution of mesoscale convective weather systems to the warm season precipitation in the United States. J. Appl. Meteorol.
**1986**, 25, 1333–1345. [Google Scholar] [CrossRef] - Ashley, W.S.; Monte, T.L.; Dixon, P.G.; Trotter, S.L.; Powell, E.J.; Durkee, J.D.; Grundstein, A.J. Distribution of mesoscale convective complex rainfall in the United States. Mon. Wea. Rev.
**2003**, 131, 3003–3017. [Google Scholar] [CrossRef] - Moncrieff, M.W. A theory of organized steady convection and its transport properties. Q. J. R. Meteorol. Soc.
**1981**, 107, 29–50. [Google Scholar] [CrossRef] - Moncrieff, M.W. Organized convective systems: Archetypal dynamical models, mass and momentum flux theory, and parameterization. Q. J. R. Meteorol. Soc.
**1992**, 118, 819–850. [Google Scholar] [CrossRef] - Purvis, R.M.; Lewis, A.C.; Carney, R.A.; McQuaid, J.B.; Arnold, S.R.; Methven, J.; Barjat, H.; Dewey, K.; Kent, J.; Monks, P.S.; et al. Rapid uplift of nonmethane hydrocarbons in a cold front over central Europe. J. Geophys. Res.
**2003**. [Google Scholar] [CrossRef] - Keppel-Aleks, G.; Wennberg, P.O.; Schneider, T. Sources of variations in total column carbon dioxide. Atmos. Chem. Phys.
**2011**, 11, 3581–3593. [Google Scholar] [CrossRef] - Styles, J.M.; Raupach, M.R.; Farquhar, G.D.; Kolle, O.; Lawton, K.A.; Brand, W.A.; Werner, R.A.; Jordan, A.; Schulze, E.-D.; Shibistova, O.; et al. Soil and canopy CO
_{2}, 13CO_{2}, H_{2}O and sensible heat flux partitions in a forest canopy inferred from concentration measurements. Tellus B**2002**, 54, 655–676. [Google Scholar] - Scott, R.L.; Huxman, T.E.; Williams, D.G.; Goodrich, D.C. Ecohydrological impacts of woody-plant encroachment: Seasonal patterns of water and carbon dioxide exchange within a semiarid riparian environment. Glob. Change Biol.
**2006**, 12, 311–324. [Google Scholar] [CrossRef] - Casso-Torralba, P.; Vilà-Guerau de Arellano, J.; Bosveld, F.; Soler, M.R.; Vermeulen, A.; Werner, C.; Moors, E. Diurnal and vertical variability of the sensible heat and carbon dioxide budgets in the atmospheric surface layer. J. Geophys. Res.
**2008**, 113, D12119. [Google Scholar] [CrossRef] - Gibert, F.; Schmidt, M.; Cuesta, J.; Ciais, P. Retrieval of average CO
_{2}fluxes by combining in situ CO_{2}measurements and backscatter lidar information. J. Geophys. Res.**2007**, 112, D10301. [Google Scholar] [CrossRef] - Bremer, D.J.; Ham, J.M. Net carbon fluxes over burned and unburned native tallgrass prairie. Rangeland Ecol. Manag.
**2010**, 63, 72–81. [Google Scholar] [CrossRef] - Potts, D.L.; Huxman, T.E.; Scott, R.L.; Williams, D.G.; Goodrich, D.C. The sensitivity of ecosystem carbon exchange to seasonal precipitation and woody plant encroachment. Oecologia
**2006**, 150, 453–463. [Google Scholar] [CrossRef] [PubMed] - Baldocchi, D. “Breathing” of the terrestrial biosphere: Lessons learned from a global network of carbon dioxide flux measurement systems. Aust. J. Bot.
**2008**, 56, 1–26. [Google Scholar] [CrossRef] - Xiao, J.Q.; Zhuang, B.E.; Law, D.D.; Baldocchi, J.; Chen, A.D.; Richardson, J.M.; Melillo, K.J.; Davis, D.Y.; Hollinger, S.; Wharton, R.; et al. Torn. Assessing net ecosystem carbon exchange of U.S. terrestrial ecosystems by integrating eddy covariance flux measurements and satellite observations. Agric. For. Meteorol.
**2011**, 151, 60–69. [Google Scholar] [CrossRef] - Jung, M.; Reichstein, M.; Bondeau, A. Towards global empirical upscaling of FLUXNET eddy covariance observations: Validation of a model tree ensemble approach using a biosphere model. Biogeosciences
**2009**, 6, 2001–2013. [Google Scholar] [CrossRef] - Lai, C.T.; Schauer, A.J.; Owensby, C.; Ham, J.M.; Helliker, B.; Tans, P.P.; Ehleringer, J.R. Regional CO
_{2}fluxes inferred from mixing ratio measurements: estimates from flask air samples in central Kansas, USA. Tellus B**2006**, 58, 523–536. [Google Scholar] [CrossRef] - Peters, W.; Miller, J.B.; Whitaker, J.; Denning, A.S.; Hirsch, A.; Krol, M.C.; Zupanski, D.; Bruhwiler, L.; Tans, P.P. An ensemble data assimilation system to estimate CO
_{2}surface fluxes from atmospheric trace gas observations. J. Geophys. Res.**2005**, 110, D24304. [Google Scholar] [CrossRef] - Brunsell, N.A. A multiscale information theory approach to assess spatial–temporal variability of daily precipitation. J. Hydrol.
**2010**, 385, 165–172. [Google Scholar] [CrossRef] - Vedral, V. The role of relative entropy in quantum information theory. Rev. Mod. Phys.
**2002**, 74, 197–234. [Google Scholar] [CrossRef] - Brunsell, N.A.; Young, C.B. Land surface response to precipitation events using MODIS and NEXRAD data. Int. J. Remote Sens.
**2008**, 29, 1965–1982. [Google Scholar] [CrossRef] - Brunsell, N.A.; Schymanski, S.J.; Kleidon, A. Quantifying the thermodynamic entropy budget of the land surface: Is this useful? Earth Syst. Dyn.
**2011**, 2, 87–103. [Google Scholar] [CrossRef] - Baldocchi, D.; Falge, E.; Gu, L.; Olson, R.; Hollinger, D.; Running, S.; Anthoni, P.; Davis, K.; Evans, R. FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull. Am. Meteorol. Soc.
**2001**, 82, 2415–2434. [Google Scholar] [CrossRef] - Baum, K.; Ham, J.; Brunsell, N.; Coyne, P. Surface boundary layer of cattle feedlots: Implications for air emissions measurements. Agric. For. Meteorol.
**2008**, 148, 1882–1893. [Google Scholar] [CrossRef] - Wilczak, J.M.; Oncley, S.P.; Stage, S.A. Sonic anemometer tilt correction algorithms. Bound.-Layer Meteorol.
**2001**, 99, 127–150. [Google Scholar] [CrossRef] - Webb, E.; Pearman, G.; Leuning, R. Correction of flux for density effects due to heat and water vapour transfer. Q. J. R. Meteorol. Soc.
**1980**, 106, 85–100. [Google Scholar] [CrossRef] - Schotanus, P.; Niewstadt, F.T.M.; de Bruin, H.A. Temperature measurement with a sonic anemometer and its application to heat and moisture fluxes. Bound.-Layer Meteorol.
**1983**, 26, 81–93. [Google Scholar] [CrossRef] - Engelen, R.J.; McNally, A.P. Estimating atmospheric CO
_{2}from advanced infrared satellite radiances within an operational 4D-Var data assimilation system: Methodology and first results. J. Geophys. Res.**2004**, 110, D18305. [Google Scholar] [CrossRef] - Maddy, E.S.; Barnet, C.D.; Goldberg, M.; Sweeney, C.; Liu, X. CO
_{2}retrievals from the Atmospheric Infrared Sounder: Methodology and validation. J. Geophys. Res.**2008**, 113, D11301. [Google Scholar] [CrossRef] - Chahine, M.; Barnet, C.; Olsen, E.T.; Chen, L.; Maddy, E. On the determination of atmospheric minor gases by the method of vanishing partial derivatives with application to CO
_{2}. Geophys. Res. Lett.**2005**, 32, L22803. [Google Scholar] [CrossRef] - Lau, K.M.; Weng, H. Climate signal detection using wavelet transform: How to make a time series sing. Bull. Am. Meteorol. Soc.
**1995**, 76, 2391–2402. [Google Scholar] [CrossRef] - Brunsell, N.A.; Nippert, J.B.; Buck, T.L. The impact of seasonality and surface heterogeneity on water use efficiency in mesic grasslands. Ecohydrology
**2012**. submitted for publication. [Google Scholar] [CrossRef] - Torrence, C.; Compo, G.P. A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc.
**1998**, 79, 61–78. [Google Scholar] [CrossRef] - Percival, D.P. On Estimation of the wavelet variance. Biometrika
**1995**, 82, 619–631. [Google Scholar] [CrossRef] - Entekhabi, D.; Rodriguez-Iturbe, I.; Castelli, F. Mutual interaction of soil moisture state and atmospheric processes. J. Hydrol.
**1996**, 184, 3–17. [Google Scholar] [CrossRef] - Ham, J.M.; Owensby, C.E.; Coyne, P.I.; Bremer, D.J. Fluxes of CO
_{2}, and water vapor from a prairie ecosystem exposed to ambient and elevated atmospheric CO_{2}. Agric. For. Meteorol.**1995**, 77, 73–93. [Google Scholar] [CrossRef] - Lai, C.-T.; Schauer, A.J.; Owensby, C.; Ham, J.M.; Ehleringer, J. Isotopic air sampling in a tallgrass prairie to partition net ecosystem CO
_{2}exchange. J. Geophys. Res.**2003**, 108, 4566. [Google Scholar] [CrossRef] - Lett, M.; Knapp, A.; Briggs, J.; Blair, J. Influence of shrub encroachment on aboveground net primary productivity and carbon and nitrogen pools in a mesic grassland. Can. J. Bot.
**2004**, 82, 1363–1370. [Google Scholar] [CrossRef] - Ratajczak, Z.; Nippert, J.B.; Hartman, J.C.; Ocheltree, T.W. Positive feedbacks amplify rates of woody encroachment in mesic tallgrass prairie. Ecosphere
**2011**, 2, 121. [Google Scholar] [CrossRef] - McCarron, J.K.; Knapp, A.K.; Blair, J.M. Soil C and N responses to woody plant expansion in a mesic grassland. Plant Soil
**2003**, 257, 183–192. [Google Scholar] [CrossRef] - McKinley, D.C.; Blair, J.M. Woody plant encroachment by juniperus virginiana in a mesic native grassland promotes rapid carbon and nitrogen accrual. Ecosystems
**2008**, 11, 454–468. [Google Scholar] [CrossRef]

© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).

## Share and Cite

**MDPI and ACS Style**

Cochran, F.V.; Brunsell, N.A.; Mechem, D.B. Comparing Surface and Mid-Tropospheric CO2 Concentrations from Central U.S. Grasslands. *Entropy* **2013**, *15*, 606-623.
https://doi.org/10.3390/e15020606

**AMA Style**

Cochran FV, Brunsell NA, Mechem DB. Comparing Surface and Mid-Tropospheric CO2 Concentrations from Central U.S. Grasslands. *Entropy*. 2013; 15(2):606-623.
https://doi.org/10.3390/e15020606

**Chicago/Turabian Style**

Cochran, Ferdouz V., Nathaniel A. Brunsell, and David B. Mechem. 2013. "Comparing Surface and Mid-Tropospheric CO2 Concentrations from Central U.S. Grasslands" *Entropy* 15, no. 2: 606-623.
https://doi.org/10.3390/e15020606