Dark Energy Problem, Physics of Early Universe and Some New Approaches in Gravity
Abstract
:1. Introduction
2. Dark Energy as Dynamical Vacuum Energy
- (1)
- IR - limit:
- (2)
- UV - limit: .
3. Quantum Theory of Early Universe
- (1)
- obviously, it is small and dimensionless;
- (2)
- its variation is rapid at high energies and slow at low energies;
- (3)
- it has ambiguous physical meaning, on the one hand being an inverse entropy of the black hole with a corresponding radius up to a certain numerical factor, and on the other hand being a minimal area multiplied by the square of the corresponding curvature;
- (4)
4. New Approaches to Gravity and Possibility for Their High-Energy Generalization
5. Comments and Conclusion
References
- Perlmutter, S.; Aldering, G.; Goldhaber, G.; Knop, R.A.; Nugent, P.; Castro, P.G.; Deustua, S.; Fabbro, S.; Goobar, A.; Groom, D.E.; et al. Measurements of Omega and Lambda from 42 high redshift supernovae. Astrophys. J. 1999, 517, 565–586. [Google Scholar] [CrossRef]
- Riess, A.G.; Filippenko, A.V.; Challis, P.; Clocchiattia, A.; Diercks, A.; Garnavich, P.M.; Gilliland, R.L.; Hogan, C.J.; Jha, S.; Kirshner, R.P.; et al. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 1998, 116, 1009–1038. [Google Scholar] [CrossRef]
- Riess, A.G.; Kirshner, R.P.; Schmidt, B.P.; Jha, S.; Challis, P.; Garnavich, P.M.; Esin, A.A.; Carpenter, C.; Grashius, R.; Schild, R.E.; et al. BV RI light curves for 22 type Ia supernovae. Astron. J. 1999, 117, 707–724. [Google Scholar] [CrossRef]
- Sahni, V.; Starobinsky, A.A. The case for a positive cosmological Lambda term. Int. J. Mod. Phys. D 2000, 9, 373–397. [Google Scholar] [CrossRef]
- Carroll, S.M. The cosmological constant. Living Rev. Rel. 2001, 4, 1–50. [Google Scholar] [CrossRef]
- Padmanabhan, T. Cosmological constant: The weight of the vacuum. Phys. Rept. 2003, 380, 235–320. [Google Scholar] [CrossRef]
- Padmanabhan, T. Dark energy: The cosmological challenge of the millennium. Curr. Sci. 2005, 88, 1057–1071. [Google Scholar]
- Peebles, P.J.E.; Ratra, B. The cosmological constant and dark energy. Rev. Mod. Phys. 2003, 75, 559–606. [Google Scholar] [CrossRef]
- Ratra, B.; Peebles, J. Cosmological consequences of a rolling homogeneous scalar field. Phys. Rev. D 1988, 37, 3406–3422. [Google Scholar] [CrossRef]
- Caldwell, R.R.; Dave, R.; Steinhardt, P.J. Cosmological imprint of an energy component with general equation of state. Phys. Rev. Lett. 1998, 80, 1582–1585. [Google Scholar] [CrossRef]
- Armendariz-Picaon, C.; Damour, T.; Mukhanov, V. K-inflation. Phys. Lett. B 1999, 458, 209–218. [Google Scholar] [CrossRef]
- Garriga, J.; Mukhanov, V. Perturbations in k-inflation. Phys. Lett. B 1999, 458, 219–225. [Google Scholar] [CrossRef]
- Padmanabhan, T. Accelerated expansion of the universe driven by tachyonic matter. Phys. Rev. D 2002, 021301. [Google Scholar] [CrossRef]
- Bagla, J.S.; Jassal, H.K.; Padmanabhan, T. Cosmology with tachyon field as dark energy. Phys. Rev. D 2003, 063504. [Google Scholar] [CrossRef]
- Abramo, L.R.W.; Finelli, F. Cosmological dynamics of the tachyon with an inverse power-law potential. Phys. Lett. B 2003, 575, 165–171. [Google Scholar] [CrossRef]
- Aguirregabiria, J.M.; Lazkoz, R. Tracking solutions in tachyon cosmology. Phys. Rev. D 2004, 123502. [Google Scholar] [CrossRef]
- Guo, Z.K.; Zhang, Y.Z. Cosmological scaling solutions of the tachyon with multiple inverse square potentials. J. Cosmol. Astropart. Phys. 2004, 0408, 010. [Google Scholar] [CrossRef]
- Copeland, E.J.; Garousi, M.R.; Sami, M.; Tsujikawa, S. What is needed of a tachyon if it is to be the dark energy? Phys. Rev. D 2005, 043003. [Google Scholar] [CrossRef]
- Sahni, V.; Shtanov, Y. Brane world models of dark energy. J. Cosmol. Astropart. Phys. 2003, 0311, 014. [Google Scholar] [CrossRef]
- Elizalde, E.; Nojiri, S.; Odintsov, S.D. Late-time cosmology in (phantom) scalar-tensor theory: Dark energy and the cosmic speed-up. Phys. Rev. D 2004, 043539. [Google Scholar] [CrossRef]
- Gasperini, M.; Piazza, F.; Veneziano, G. Quintessence as a run-away dilaton. Phys. Rev. D 2002, 023508. [Google Scholar]
- Damour, T.; Piazza, F.; Veneziano, G. Runaway dilaton and equivalence principle violations. Phys. Rev. Lett. 2002, 081601. [Google Scholar] [CrossRef]
- Kamenshchik, A.Y.; Moschella, U.; Pasquier, V. An alternative to quintessence. Phys. Lett. B 2001, 511, 265–268. [Google Scholar] [CrossRef]
- Randall, L.; Sundrum, R. A large mass hierarchy from a small extra dimension. Phys. Rev. Lett. 1999, 83, 4690–4693. [Google Scholar] [CrossRef]
- Nilles, H.P.; Papazoglou, A.; Tasinato, G. Selftuning and its footprints. Nucl. Phys. B 2004, 677, 405–429. [Google Scholar] [CrossRef]
- Aghababaie, Y.; Burgess, C.P.; Parameswaran, S.L.; Quevedo, F. Towards a naturally small cosmological constant from branes in 6D supergravity. Nucl. Phys. B 2004, 680, 389–414. [Google Scholar] [CrossRef]
- Burgess, C.P. Towards a natural theory of dark energy: Supersymmetric large extra dimensions. AIP Conf. Proc. 2005, 743, 417–449. [Google Scholar]
- Arefeva, I.Y.; Dragovic, B.G.; Volovich, I.V. The extra timelike dimensions lead to a vanishing cosmological constant. Phys. Lett. B 1986, 177, 357–362. [Google Scholar] [CrossRef]
- Mukohyama, S.; Randall, L. A dynamical approach to the cosmological constant. Phys. Rev. Lett. 2004, 211302. [Google Scholar] [CrossRef]
- Garriga, J.; Vilenkin, A. On likely values of the cosmological constant. Phys. Rev. D 2000, 083502. [Google Scholar] [CrossRef]
- Elizalde, E.; Nojiri, S.; Odintsov, S.D.; Saez-Gomez, D. Unifying inflation with dark energy in modified F(R) horava-lifshitz gravity. Eur. Phys. J. C 2010, 70, 351–361. [Google Scholar] [CrossRef]
- Capozziello, S.; Matsumoto, J.; Nojiri, S.; Odintsov, S.D. Dark energy from modified gravity with lagrange multipliers. Phys. Lett. B 2010, 693, 351–361. [Google Scholar] [CrossRef] [Green Version]
- Astashenok, A.V.; Nojiri, S.; Odintsov, S.D.; Scherrer, R.J. Scalar dark energy models mimicking Λ CDM with arbitrary future evolution. Phys .Lett. B 2012, 713, 145–153. [Google Scholar] [CrossRef]
- Bamba, K.; Capozziello, S.; Nojiri, S.; Odintsov, S.D. Dark energy cosmology: The equivalent description via different theoretical models and cosmography tests. 2012. [Google Scholar] [CrossRef]
- Klinkhamer, F.R. Fundamental length scale of quantum spacetime foam. JETP Lett. 2007, 86, 2167–2180. [Google Scholar] [CrossRef]
- Amelino-Camelia, G.; Smolin, L. Prospects for constraining quantum gravity dispersion with near term observations. Phys. Rev. D 2009, 084017. [Google Scholar] [CrossRef]
- Gubitosi, G.; Pagano, L.; Amelino-Camelia, G.; Melchiorri, A.; Cooray, A. A constraint on planck-scale modifications to electrodynamics with CMB polarization data. J. Cosmol. Astropart. Phys. 2009, 0908, 021. [Google Scholar] [CrossRef]
- Amelino-Camelia, G. Building a case for a planck-scale-deformed boost action: The planck-scale particle-localization limit. Int. J. Mod. Phys. D 2005, 14, 2167–2180. [Google Scholar] [CrossRef]
- Hossenfelder, S.; Bleicher, M.; Hofmann, S.; Ruppert, J.; Scherer, S.; Stocker, H. Signatures in the planck regime. Phys. Lett. B 2003, 575, 85–99. [Google Scholar] [CrossRef]
- Hossenfelder, S. Running coupling with minimal length. Phys. Rev. D 2004, 70, 105003. [Google Scholar] [CrossRef]
- Hossenfelder, S. Self-consistency in theories with a minimal length. Class. Quant. Grav. 2006, 23, 1815–1821. [Google Scholar] [CrossRef]
- Jacobson, T. Thermodynamics of space-time: The einstein equation of state. Phys. Rev. Lett. 1995, 75, 1260–1263. [Google Scholar] [CrossRef] [PubMed]
- Padmanabhan, T. A new perspective on gravity and the dynamics of spacetime. Int. J. Mod. Phys. 2005, D14, 2263–2270. [Google Scholar] [CrossRef]
- Padmanabhan, T. The holography of gravity encoded in a relation between entropy, horizon area and action for gravity. Gen. Rel. Grav. 2002, 34, 2029–2035. [Google Scholar] [CrossRef]
- Padmanabhan, T. Holographic gravity and the surface term in the einstein-hilbert action. Braz. J. Phys. 2005, 35, 362–372. [Google Scholar] [CrossRef]
- Padmanabhan, T. Gravity: A new holographic perspective. Int. J. Mod. Phys. D 2006, 15, 1659–1676. [Google Scholar] [CrossRef]
- Mukhopadhyay, A.; Padmanabhan, T. Holography of gravitational action functionals. Phys. Rev. D 2006, 124023. [Google Scholar] [CrossRef]
- Padmanabhan, T. Dark energy and gravity. Gen. Rel. Grav. 2008, 40, 529–564. [Google Scholar] [CrossRef]
- Padmanabhan, T.; Paranjape, A. Entropy of null surfaces and dynamics of spacetime. Phys. Rev. D 2007, 064004. [Google Scholar] [CrossRef]
- Padmanabhan, T. Gravity as an Emergent Phenomenon: A Conceptual Description. 2007. [Google Scholar]
- Padmanabhan, T. Gravity and the thermodynamics of horizons. Phys. Rept. 2005, 406, 49–125. [Google Scholar] [CrossRef]
- Paranjape, A.; Sarkar, S.; Padmanabhan, T. Thermodynamic route to field equations in lancos-lovelock gravity. Phys. Rev. D 2006, 104015. [Google Scholar]
- Padmanabhan, T. Thermodynamical aspects of gravity: New insights. Rep. Prog. Phys. 2010, 046901. [Google Scholar] [CrossRef]
- Verlinde, E. On the origin of gravity and the laws of newton. J. High Energy Phys. 2011, 1104, 029. [Google Scholar] [CrossRef]
- Shalyt-Margolin, A.E. Entropy in the present and early universe and vacuum energy. AIP Conf. Proc. 2010, 1205, 160–167. [Google Scholar]
- Shalyt-Margolin, A.E. Entropy in the present and early universe: New small parameters and dark energy problem. Entropy 2010, 12, 932–952. [Google Scholar] [CrossRef]
- Shalyt-Margolin, A.E. Quantum theory at planck scale, limiting values, deformed gravity and dark energy problem. Int. J. Mod. Phys. D 2012, 1250013. [Google Scholar] [CrossRef]
- Shalyt-Margolin, A.E. Quantum theory at planck scale, dynamical cosmological term and deformed gravity. Int. J. Theory Math. Phys. 2011, 1, 1–12. [Google Scholar] [CrossRef]
- Sciama, D.W. Cosmology, galactic astronomy and elementary particle physics. Proc. R. Soc. Lond. A 1984, 394, 1–17. [Google Scholar] [CrossRef]
- Bowyer, S.; Korpela, E.J.; Edelstein, J.; Lampton, M.; Morales, C.; Perez-Mercader, J.; Gomez, J.F.; Trapero, J. Evidence against the sciama model of radiative decay of massive neutrinos. Astrophys. J. 1999. [Google Scholar] [CrossRef]
- Turner, M.S. Dark matter in the universe. Phys. Scripta 1991, T36, 167–182. [Google Scholar] [CrossRef]
- Hooper, D. TASI 2008 lectures on dark matter. 2009. [Google Scholar]
- Bertolami, O.; Cim, N. Time dependent cosmological term. Nuovo Cim. B 1986, 93, 36–42. [Google Scholar] [CrossRef]
- Carvalho, J.C.; Lima, J.A.S.; Waga, I. On the cosmological consequences of a time dependent lambda term. Phys. Rev. D 1992, 46, 2404–2407. [Google Scholar] [CrossRef]
- Chimento, L.P.; Pavon, D. Inhomogeneous universe models with varying cosmological term. Gen. Rel. Grav. 1998, 30, 643–651. [Google Scholar] [CrossRef]
- Harko, T.; Mak, M.K. Particle creation in cosmological models with varying gravitational and cosmological “constants”. Gen. Rel. Grav. 1999, 31, 849–862. [Google Scholar] [CrossRef]
- Carneiro, S. Decaying lambda cosmology with varying G. 2003. [Google Scholar]
- Aldrovandi, R.; Beltran-Almeida, J.P.; Pereira, J.G. Time-varying cosmological term: Emergence and fate of a FRW comments. Grav. Cosmol. 2005, 11, 277–283. [Google Scholar]
- Cai, R.-G.; Hu, B.; Zhang, Y. Holography, UV/IR Relation, causal entropy bound and dark energy. Commun. Theory Phys. 2009, 51, 954–960. [Google Scholar]
- Shapiro, I.L.; Sola, J. Can the cosmological ”constant” run? - It may run. 2008. [Google Scholar]
- Richard, T.H.; Pilling, T. Dark entropy. 2008. [Google Scholar]
- O’Connell, R.F. The expansion of the universe and the cosmological constant problem. Phys. Lett. A 2007, 366, 177–178. [Google Scholar] [CrossRef]
- Zel’dovich, Y.B. The cosmological constant and the theory of elementary particles. Sov. Phys. Uspehi 1968, 11, 381–393. [Google Scholar] [CrossRef]
- Weinberg, S. The cosmological constant problem. Rev. Mod. Phys. 1989, 61, 1–23. [Google Scholar] [CrossRef]
- Jejjala, V.; Kavic, M.; Minic, D. Time and M-theory. Int. J. Mod. Phys. A 2007, 22, 3317–3405. [Google Scholar] [CrossRef]
- Jejjala, V.; Kavic, M.; Minic, D. Fine structure of dark energy and new physics. Adv. High Energy Phys. 2007, 21586. [Google Scholar] [CrossRef]
- Jejjala, V.; Minic, D. Why there is something so close to nothing: Towards a fundamental theory of the cosmological constant. Int. J. Mod. Phys. A 2007, 22, 1797–1818. [Google Scholar] [CrossRef]
- Jejjala, V.; Minic, D.; Tze, C.-H. Toward a background independent quantum theory of gravity. Int. J. Mod. Phys. D 2004, 13, 2307–2314. [Google Scholar] [CrossRef]
- Padmanabhan, T. Darker Side of the Universe ... and the Crying Need for Some Bright Ideas! In Proceedings of the 29th International Cosmic Ray Conference, Pune, India, 3–10 August 2005; pp. 47–62.
- Padmanabhan, T. Dark Energy: Mystery of the Millennium. American Institute of Physics Conference Proceedings 2006, 861, 858–866. [Google Scholar]
- Balazs, C.; Szapudi, I. Naturalness of the vacuum energy in holographic theories. 2006. [Google Scholar]
- Hooft, G.T. Dimensional reduction in quantum gravity. Essay dedicated to Abdus Salam. 2009. [Google Scholar]
- Hooft, G.T. The holographic principle. 2001. [Google Scholar]
- Susskind, L. The world as a hologram. J. Math. Phys. 1995, 36, 6377–6396. [Google Scholar] [CrossRef]
- Bousso, R. The holographic principle. Rev. Mod. Phys 2002, 74, 825–874. [Google Scholar] [CrossRef]
- Bousso, R. A covariant entropy conjecture. J. Cosmol. Astropart. Phys. 1999, 07, 004. [Google Scholar] [CrossRef]
- Garay, L. Quantum gravity and minimum length. Int. J. Mod. Phys. A 1995, 10, 145–166. [Google Scholar] [CrossRef]
- Ahluwalia, D.V. Wave particle duality at the Planck scale: Freezing of neutrino oscillations. Phys. Lett. 2000, A275, 31–35. [Google Scholar] [CrossRef]
- Ahluwalia, D.V. Interface of gravitational and quantum realms. Mod. Phys. Lett. 2002, A17, 1135–1146. [Google Scholar] [CrossRef]
- Maggiore, M. A generalized uncertainty principle in quantum gravity. Phys. Lett. B 1993, B304, 65–69. [Google Scholar] [CrossRef]
- Maggiore, M. The algebraic structure of the generalized uncertainty principle. Phys. Lett. B 1993, 319, 83–86. [Google Scholar] [CrossRef]
- Veneziano, G. A stringy nature needs just two constants. Europhys. Lett. 1986, 2, 199–211. [Google Scholar] [CrossRef]
- Amati, D.; Ciafaloni, M.; Veneziano, G. Can space-time be probed below the string size? Phys. Lett. B 1989, 216, 41–47. [Google Scholar]
- Witten, E. Reflections on the fate of spacetime. Phys. Today 1996, 49, 24–28. [Google Scholar] [CrossRef]
- Adler, R.J.; Santiago, D.I. On gravity and the uncertainty principle. Mod. Phys. Lett. A 1999, 14, 1371–1378. [Google Scholar] [CrossRef]
- Scardigli, F. Generalized uncertainty principle in quantum gravity from micro-black hole Gedanken experiment. Phys. Lett. B 1999, 452, 39–44. [Google Scholar] [CrossRef]
- Bambi, C. A revision of the generalized uncertainty principle. Class. Quant. Grav. 2008, 25, 105003. [Google Scholar] [CrossRef]
- Bolen, B.; Cavaglia, M. (Anti-)de Sitter black hole thermodynamics and the generalized uncertainty principle. Gen. Rel. Grav. 2005, 37, 1255–1263. [Google Scholar] [CrossRef]
- Kempf, A.; Mangano, G.; Mann, R.B. Hilbert space representation of the minimal length uncertainty relation. Phys. Rev. D 1995, 52, 1108–1118. [Google Scholar] [CrossRef]
- Shalyt-Margolin, A.E.; Suarez, J.G. Quantum mechanics of the early universe and its limiting transition. 2003. [Google Scholar]
- Shalyt-Margolin, A.E.; Suarez, J.G. Quantum mechanics at Planck’s scale and density matrix. Int. J. Mod. Phys. D 2003, 12, 1265–1278. [Google Scholar] [CrossRef]
- Shalyt-Margolin, A.E.; Tregubovich, A.Y. Deformed density matrix and generalized uncertainty relation in thermodynamics. Mod. Phys. Lett. A 2004, 19, 71–82. [Google Scholar] [CrossRef]
- Shalyt-Margolin, A.E. Nonunitary and unitary transitions in generalized quantum mechanics, new small parameter and information problem solving. Mod. Phys. Lett. A 2004, 19, 391–404. [Google Scholar] [CrossRef]
- Shalyt-Margolin, A.E. Pure states, mixed states and Hawking problem in generalized quantum mechanics. Mod. Phys. Lett. A 2004, 19, 2037–2045. [Google Scholar] [CrossRef]
- Shalyt-Margolin, A.E. The universe as a nonuniform lattice in finite volume hypercube. I. Fundamental definitions and particular features. Int. J. Mod. Phys. D 2004, 13, 853–864. [Google Scholar] [CrossRef]
- Shalyt-Margolin, A.E. The universe as a nonuniform lattice in the finite-dimensional hypercube. II. Simple cases of symmetry breakdown and restoration. Int. J. Mod. Phys. A 2005, 20, 4951–4964. [Google Scholar] [CrossRef]
- Shalyt-Margolin, A.E.; Strazhev, V.I. The Density Matrix Deformation in Quantum and Statistical Mechanics in Early Universe. In Proceedings of the Sixth International Symposium “Frontiers of Fundamental and Computational Physics, Udine, Italy, 26–29 September,2004; Sidharth, B.G., Honsell, F., de Angelis, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; pp. 131–134. [Google Scholar]
- Shalyt-Margolin, A.E. The Density Matrix Deformation in Physics of the Early Universe and Some of Its Implications. In Quantum Cosmology Research Trends; Reimer, A., Ed.; Nova Science Publishers Inc.: Hauppauge, NY, USA, 2005; pp. 49–91. [Google Scholar]
- Shalyt-Margolin, A.E. Deformed density matrix and quantum entropy of the black hole. Entropy 2006, 8, 31–43. [Google Scholar] [CrossRef]
- Faddeev, L. Mathematical view on evolution of physics. Priroda 1989, 5, 11–18. [Google Scholar]
- Park, M.-I. The generalized uncertainty principle in (A)dS space and the modification of hawking temperature from the minimal length. Phys. Lett. B 2008, 659, 698–702. [Google Scholar] [CrossRef]
- Kim, W.; Son, E.J.; Yoon, M. Thermodynamics of a black hole based on a generalized uncertainty principle. J. Cosmol. Astropart. Phys. 2008, 08, 035. [Google Scholar] [CrossRef]
- Kolb, E.; Turner, M. The Early Universe; Addison Wesley: Reading, UK, 1990. [Google Scholar]
- Baumann, D. TASI lectures on inflation. 2009. [Google Scholar]
- Shalyt-Margolin, A.E. Deformed quantum field theory, thermodynamics at low and high energies, and gravity. II. Deformation parameter. Int. J. Theory Math. Phys. 2012, 2, 41–50. [Google Scholar] [CrossRef]
- Dvali, G. Infrared modification of gravity. 2004. [Google Scholar]
- Patil, S.P. Degravitation, inflation and the cosmological constant as an afterglow. J. Cosmol. Astropart. Phys. 2009, 0901, 017. [Google Scholar] [CrossRef]
- Rubakov, V.A.; Tinyakov, P.G. Infrared-modified gravities and massive gravitons. Phys. Usp 2008, 51, 123, 759–792. [Google Scholar] [CrossRef]
- Nikiforova, V.; Randjbar-Daemi, S.; Rubakov, V. Infrared modified gravity with dynamical torsion. Phys. Rev. D 2009, 80, 124050. [Google Scholar] [CrossRef]
- Shalyt-Margolin, A.E. Probable entropic nature of gravity in ultraviolet and infrared limits. I.Ultraviolet case. 2012. [Google Scholar]
- Komar, A. Covariant conservation laws in general relativity. Phys. Rev. 1959, 113, 934–936. [Google Scholar] [CrossRef]
- Wald, R.M. General Relativity; The University Chicago Press: Chicago, IL, USA, 1984. [Google Scholar]
- Magnon, A. On komar integrals in asymptotically anti de sitter spacetimes. J. Math. Phys. 1985, 26, 3112–3117. [Google Scholar] [CrossRef]
© 2012 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Shalyt-Margolin, A. Dark Energy Problem, Physics of Early Universe and Some New Approaches in Gravity. Entropy 2012, 14, 2143-2156. https://doi.org/10.3390/e14112143
Shalyt-Margolin A. Dark Energy Problem, Physics of Early Universe and Some New Approaches in Gravity. Entropy. 2012; 14(11):2143-2156. https://doi.org/10.3390/e14112143
Chicago/Turabian StyleShalyt-Margolin, Alexander. 2012. "Dark Energy Problem, Physics of Early Universe and Some New Approaches in Gravity" Entropy 14, no. 11: 2143-2156. https://doi.org/10.3390/e14112143