# Conformal Relativity versus Brans–Dicke and Superstring Theories

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

**PACS**98.80.Hw, 04.20.Jb, 04.50.+h, 11.25.Mj

## 1. Introduction

## 2. Conformal Relativity

## 3. Relation to Brans–Dicke and Low-energy-effective Superstring Theories

## 4. Conformal Cosmology in Einstein and String Frames

## 5. Discussion

_{1}) vanishes while for superstring-effective theory two of them vanish (γ and β

_{4}).

## Acknowledgments

## References

- Birell, N.D.; Davies, P.C.W. Quantum Field Theory in Curved Space; Cambridge University Press: Cambridge, UK, 1982. [Google Scholar]
- Hoyle, F.; Narlikar, J.V. A new theory of gravitation. Proc. Roy. Soc. A
**1964**, 282, 191–207. [Google Scholar] [CrossRef] - Hoyle, F.; Narlikar, J.V. A conformal theory of gravitation. Proc. Roy. Soc. A
**1966**, 294, 138–148. [Google Scholar] [CrossRef] - Hoyle, F.; Narlikar, J.V.; Dirac, P.A.M.; Bondi, H.; Schlegel, R.; Davidson, W.; Synge, J.L. Mach’s principle and the creation of matter. Proc. Roy. Soc. A
**1962**, 270, 334–344. [Google Scholar] [CrossRef] - Chernikov, N.; Tagirov, E. Quantum theory of scalar field in de Sitter space-time. Ann. Inst. Henri Poincarè
**1968**, 9, 109–141. [Google Scholar] - Bekenstein, J.D. Exact solutions of Einstein-conformal scalar equations. Ann. Phys. (NY)
**1974**, 82, 535–547. [Google Scholar] [CrossRef] - Narlikar, J.V. Introduction to Cosmology; Jones and Bartlett Publishers, Inc: Portola Valley, CA, USA, 1983. [Google Scholar]
- Penrose, R. Relativity, Groups and Topology; Gordon and Breach: London, UK, 1964. [Google Scholar]
- Behnke, D.; Blaschke, D.B.; Pervushin, V.N.; Proskurin, D.V. Description of supernova data in conformal cosmology without cosmological constant. Phys. Lett. B
**2002**, 530, 20–26. [Google Scholar] [CrossRef] - Blaschke, D.B.; Behnke, D.; Pervushin, V.N.; Proskurin, D.V. Relative Standard of Measurement and Supernova Data. In On the Nature of Dark Energy; Brax, P., Martin, J., Uzan, J.-P., Eds.; Frontier Group: Paris, France, 2002. [Google Scholar]
- Weinberg, S. The cosmological constant problem. Rev. Mod. Phys.
**1989**, 61, 1–23. [Google Scholar] [CrossRef] - Perlmutter, S.; Aldering, G.; Goldhaber, G.; Knop, R.A.; Nugent, P.; Castro, P.G.; Deustua, S.; Fabbro, S.; Goobar, A.; Groom, D.E.; et al. Measurements of Ω and Λ from 42 high-redshift supernovae. Astrophys. J.
**1999**, 517, 565–586. [Google Scholar] [CrossRef] - Riess, A.G.; Filippenko, V.; Challis, P.; Clocchiatti, A.; Diercks, A.; Garnavich, P.M.; Gilliland, R.L.; Hogan, C.J.; Jha, S.; Kirshner, R.P.; et al. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J.
**1998**, 116, 1009–1038. [Google Scholar] [CrossRef] - Riess, A.G.; Nugent, P.E.; Gilliland, R.L.; Schmidt, B.P.; Tonry, J.; Dickinson, M.; Thompson, R.I.; Budavab, T.S.; Casertano, S.; Evans, A.; et al. The farthest known supernova: Support for an accelerating universe and a glimpse of the epoch of deceleration. Astrophys. J.
**2001**, 560, 49–71. [Google Scholar] [CrossRef] - Perlmutter, S.; Turner, M.S.; White, M. Constraining dark energy with type Ia supernovae and large-scale structure. Phys. Rev. Lett.
**1999**, 83, 670–673. [Google Scholar] [CrossRef] - Barber, G.A. On two “self-creation” cosmologies. Gen. Relat. Gravit.
**1982**, 14, 117–136. [Google Scholar] [CrossRef] - Barber, G.A. A new self-creation cosmology. Astrophys. Space Sci.
**2002**, 282, 683–731. [Google Scholar] [CrossRef] - Anderson, J.D.; Laing, P.A.; Eunice, L.L.; Liu, A.S.; Nieto, M.M.; Turyshev, S.G. Study of the anomalous acceleration of Pioneer 10 and 11. Phys. Rev. D
**2002**, 65, 082004:1–082004:50. [Google Scholar] [CrossRef] - Brans, C.; Dicke, R.H. Mach’s principle and a relativistic theory of gravitation. Phys. Rev.
**1961**, 124, 925–935. [Google Scholar] [CrossRef] - Polchinski, J. String Theory; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
- Dąbrowski, M.P. Quantum string cosmologies. Ann. Phys. (Leipzig)
**2001**, 10, 195–217. [Google Scholar] [CrossRef] - Dąbrowski, M.P. String Cosmologies; University of Szczecin Press: Szczecin, Poland, 2002. [Google Scholar]
- Dirac, P.A.M. A new basis for cosmology. Proc. Roy. Soc. A
**1938**, 165, 199–208. [Google Scholar] [CrossRef] - Fujii, Y.; Maeda, K.-I. The Scalar-Tensor Theory of Gravitation; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Boisseau, B.; Esposito-Farese, G.; Polarski, D.; Starobinsky, A.A. Reconstruction of a scalar-tensor theory of gravity in an accelerating universe. Phys. Rev. Lett.
**2000**, 85, 2236–2239. [Google Scholar] [CrossRef] [PubMed] - Esposito-Farese, G.; Polarski, D. Scalar-tensor gravity in an accelerating universe. Phys. Rev. D
**2001**, 63. [Google Scholar] [CrossRef] - Misner, C.W.; Thorne, K.S.; Wheeler, J.A. Gravitation; W.H. Freeman and Company: New York, NY, USA, 1995. [Google Scholar]
- Hawking, S.W.; Ellis, G.F.R. The Large-Scale Structure of Space-Time; Cambridge University Press: West Nyack, NY, USA, 1999. [Google Scholar]
- Flanagan, É.É. The conformal frame freedom in theories of gravitation. Class. Quant. Grav.
**2004**, 21, 3817–3829. [Google Scholar] [CrossRef] - Dąbrowski, M.P.; Garecki, J.; Blaschke, D.B. Conformal transformations and conformal invariance in gravitation. Ann. Phys. (Berlin)
**2009**, 18, 13–32. [Google Scholar] [CrossRef] - Carneiro, D.F.; Freiras, E.A.; Gonçalves, B.; de Lima, A.G.; Shapiro, I.L. On useful conformal tranformations in general relativity. Gravit. Cosmol.
**2004**, 40, 305–312. [Google Scholar] - Sitoriou, T.P.; Faraoni, V. f(R) theories of gravity. Rev. Mod. Phys.
**2010**, 82, 451–497. [Google Scholar] [CrossRef] - Jordan, P. The present state of Dirac’s cosmological hypothesis. Zeit. Phys.
**1959**, 157, 112–121. [Google Scholar] [CrossRef] - Canuto, V.M.; Adams, P.J.; Hsieh, S.H.; Tsiang, E. Scale-covariant theory of gravitation and astrophysical applications. Phys. Rev. D
**1977**, 16, 1643–1663. [Google Scholar] [CrossRef] - Weinberg, S. Gravitation and Cosmology; John Wiley & Sons: New York, NY, USA, 1972. [Google Scholar]
- Weyl, H. Gravitation und Elektrizität. Sitzber. Presuss. Akad. d. Wiss. Berlin, Phys.-Math.Kl.
**1918**, 465–480. [Google Scholar] - Deruelle, N.; Sasaki, M.; Sendouda, Y.; Youssef, A. Inflation with a Weyl term, or ghost at work. J. Cosmol. Astropart. Phys.
**2011**, 40. [Google Scholar] [CrossRef] - Flanagan, É.É. Fourth order Weyl gravity. Phys. Rev. D
**2006**, 74, 023002:1–023002:4. [Google Scholar] [CrossRef] - d’Inverno, R. Einführung in die Relativitätstheorie; VCH, Weinheim: Weinheim, Germany, 1995. [Google Scholar]
- Lidsey, J.; Wands, D.W.; Copeland, E. Superstring cosmology. Phys. Rep.
**2000**, 337, 343–492. [Google Scholar] [CrossRef] - Copeland, E.J.; Lahiri, A.; Wands, D. Low energy effective string cosmology. Phys. Rev. D
**1994**, 50, 4868–4880. [Google Scholar] [CrossRef] - Copeland, E.J.; Lahiri, A.; Wands, D. String cosmology with a time-dependent antisymmetric tensor potential. Phys. Rev. D
**1995**, 51, 1569–1576. [Google Scholar] [CrossRef] - Barrow, J.D.; Dąbrowski, M.P. Kantowski-Sachs string cosmologies. Phys. Rev. D
**1997**, 55, 630–638. [Google Scholar] [CrossRef] - Gasperini, M.; Veneziano, G. The pre-big-bang scenario in string cosmology. Phys. Rep.
**2003**, 373, 1–212. [Google Scholar] [CrossRef] - Barrow, J.D.; Kimberley, D.; Magueijo, J. Bouncing universes with varying constants. Class. Quant. Grav.
**2004**, 21, 4289–4296. [Google Scholar] [CrossRef] - Dąbrowski, M.P.; Stachowiak, T.; Szydłowski, M. Phantom cosmologies. Phys. Rev. D
**2003**, 68. [Google Scholar] [CrossRef] - Witten, E. String theory dynamics in various dimensions. Nucl. Phys. B
**1995**, 443, 85–126. [Google Scholar] [CrossRef] - Shapiro, I.L. On the conformal transformation and duality in gravity. Class. Quant. Grav.
**1997**, 14, 391–406. [Google Scholar] [CrossRef] - Shapiro, I.L.; Takata, H. One-loop renormalization of the four-dimensional theory for quantum dilaton gravity. Phys. Rev. D
**1995**, 52, 2162–2175. [Google Scholar] [CrossRef] [Green Version] - Shapiro, I.L.; Takata, H. Conformal transformation in gravity. Phys. Lett. B 1995
**1995**, 361, 31–37. [Google Scholar] [CrossRef] - De Barros, J.A.; Shapiro, I.L. Renormalization group study of the higher derivative conformal scalar model. Phys. Lett. B
**1997**, 412, 242–252. [Google Scholar] [CrossRef] - Dąbrowski, M.P.; Denkiewicz, T.; Blaschke, D.B. The conformal status of ω = −3/2 Brans-Dicke cosmology. Ann. Phys. (Berlin)
**2007**, 17, 237–257. [Google Scholar] [CrossRef] - Meissner, K.A.; Veneziano, G. Symmetries of cosmological superstring vacua. Phys. Lett. B
**1991**, 267, 33–36. [Google Scholar] [CrossRef] - Meissner, K.A.; Veneziano, G. Manifestly O(d, d) invariant approach to space-time dependent string vacua. Mod. Phys. Lett. A
**1991**, 6, 3397–3404. [Google Scholar] [CrossRef] - Khoury, J.; Steinhardt, P.J.; Turok, N. Inflation versus cyclic predictions for spectral tilt. Phys. Rev. Lett.
**2003**, 91. [Google Scholar] [CrossRef] - Khoury, J.; Steinhardt, P.J.; Turok, N. Designing cyclic universe models. Phys. Rev. Lett.
**2004**, 92. [Google Scholar] [CrossRef] - Khoury, J.; Ovrut, B.A.; Steinhardt, P.J.; Turok, N. Ekpyrotic universe: Colliding branes and the origin of the hot big bang. Phys. Rev. D
**2001**, 64, 123522:1–123522:24. [Google Scholar] [CrossRef] - Khoury, J.; Ovrut, B.A.; Steinhardt, P.J.; Turok, N. Density perturbations in the ekpyrotic scenario. Phys. Rev. D
**2002**, 66. [Google Scholar] [CrossRef] - Kanno, S.; Soda, J. Brane world effective action at low energies and AdS/CFT correspondence. Phys. Rev. D
**2002**, 66. [Google Scholar] [CrossRef] [Green Version] - Kanno, S.; Soda, J. Braneworld Kaluza-Klein corrections in a nutshell. Phys. Lett. B
**2004**, 588, 203–209. [Google Scholar] [CrossRef]

© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).

## Share and Cite

**MDPI and ACS Style**

Blaschke, D.B.; Dąbrowski, M.P.
Conformal Relativity versus Brans–Dicke and Superstring Theories. *Entropy* **2012**, *14*, 1978-1996.
https://doi.org/10.3390/e14101978

**AMA Style**

Blaschke DB, Dąbrowski MP.
Conformal Relativity versus Brans–Dicke and Superstring Theories. *Entropy*. 2012; 14(10):1978-1996.
https://doi.org/10.3390/e14101978

**Chicago/Turabian Style**

Blaschke, David B., and Mariusz P. Dąbrowski.
2012. "Conformal Relativity versus Brans–Dicke and Superstring Theories" *Entropy* 14, no. 10: 1978-1996.
https://doi.org/10.3390/e14101978