# Superstatistics and Gravitation

## Abstract

**:**

## 1. Introduction

## 2. The Entropy

## 3. Newton’s modified gravity

## 4. Discussion and Outlook

## Acknowledgements

## References

- Beck, C.; Cohen, E.G.D. Superstatistics. Phys. A
**2003**, 322, 267–275. [Google Scholar] [CrossRef] - Beck, C.; Van der Straeten, E. Superstatistical distributions from a maximum entropy principle. Phys. Rev. E
**2008**, 78, 051101. [Google Scholar] - Tsallis, C. Possible generalization of Boltzmann-Gibbs statistics. J. Statist. Phys.
**1988**, 52, 479–487. [Google Scholar] [CrossRef] - Tsallis, C.; Mendes, R.S.; Plastino, A.R. The role of constraints within generalized nonextensive statistics. Physica A
**1998**, 261, 534–554. [Google Scholar] [CrossRef] - Tsallis, C.; Souza, A.M.C. Constructing a statistical mechanics for Beck-Cohen superstatistics. Phys. Rev. E
**2003**, 67, 026106. [Google Scholar] [CrossRef] - Bardeen, J.M.; Carter, B.; Hawking, S.W. The four laws of black hole mechanics. Commun. Math. Phys.
**1973**, 31, 161–170. [Google Scholar] [CrossRef] - Hawking, S.W. Particle creation by black holes. Commun. Math. Phys.
**1975**, 43, 199–220. [Google Scholar] [CrossRef] - Jacobson, T. Thermodynamics of space-time: The Einstein equation of state. Phys. Rev. Lett.
**1995**, 75, 1260–1263. [Google Scholar] [CrossRef] [PubMed] - Verlinde, E.P. On the origin of gravity and the laws of Newton. arXiv
**2010**, 1001.0785. [Google Scholar] [CrossRef] - ’t Hooft, G. Dimensional reduction in quantum gravity. arXiv
**1993**. gr-qc/9310026. [Google Scholar] - Susskind, L. The world as a hologram. J. Math. Phys.
**1995**, 36, 6377–6396. [Google Scholar] [CrossRef] - Eling, C.; Guedens, R.; Jacobson, T. Non-equilibrium thermodynamics of spacetime. Phys. Rev. Lett.
**2006**, 96, 121301. [Google Scholar] [CrossRef] [PubMed] - Chirco, G.; Liberati, S. Non-equilibrium thermodynamics of spacetime: The role of gravitational dissipation. Phys. Rev. D
**2010**, 81, 024016. [Google Scholar] [CrossRef] - Chandrasekhar, S. The mathematical theory of black holes; Clarendon: Oxford, UK, 1992; p. 646. [Google Scholar]
- Hawking, S.W.; Hartle, J.B. Energy and angular momentum flow into a black hole. Commun. Math. Phys.
**1972**, 27, 283–290. [Google Scholar] [CrossRef] - Padmanabhan, T. Gravity as an emergent phenomenon: A conceptual description. AIP Conf. Proc.
**2007**, 939, 114–123. [Google Scholar] - Gil-Villegas, A.; Obregón, O.; Robledo, A. Unpublished work. 2010.
- Cai, R.G.; Cao, L.M.; Ohta, N. Friedmann equations from entropic force. Phys. Rev. D
**2010**, 81, 061501. [Google Scholar] [CrossRef] - Cai, R.G.; Cao, L.M.; Ohta, N. Notes on entropy force in general spherically symmetric spacetimes. Phys. Rev. D
**2010**, 81, 084012. [Google Scholar] [CrossRef] - Ling, Y.; Wu, J.P. A note on entropic force and brane cosmology. arXiv
**2010**, 1001.5324. [Google Scholar] [CrossRef] - Myung, Y.S. Entropic force in the presence of black hole. arXiv
**2010**, 1002.0871. [Google Scholar] - Banerjee, R.; Majhi, B.R. Statistical origin of gravity. arXiv
**2010**, 1003.2312. [Google Scholar] [CrossRef] - Liu, Y.X.; Wang, Y.Q.; Wei, S.W. Temperature and energy of 4-dimensional black holes from entropic force. arXiv
**2010**, 1002.1062. [Google Scholar] - Konoplya, R.A. Entropic force, holography and thermodynamics for static space-times. arXiv
**2010**, 1002.2818. [Google Scholar] [CrossRef] - Cai, Y.F.; Liu, J.; Li, H. Entropic cosmology: A unified model of inflation and late-time acceleration. arXiv
**2010**, 1003.4526. [Google Scholar] [CrossRef] - Sheykhi, A. Entropic corrections to Friedmann equations. Phys. Rev. D
**2010**, 81, 104011. [Google Scholar] [CrossRef] - Ghosh, S. Planck scale effect in the entropic force law. arXiv
**2010**, 1003.0285. [Google Scholar] - Smolin, L. Newtonian gravity in loop quantum gravity. arXiv
**2010**, 1001.3668. [Google Scholar] - Vancea, I.V.; Santos, M.A. Entropic force law, emergent gravity and the uncertainty principle. arXiv
**2010**, 1002.2454. [Google Scholar] - Zhao, Y. Entropic force and its fluctuation in Euclidian quantum gravity. arXiv
**2010**, 1002.4039. [Google Scholar] - Munkhammar, J. Is holographic entropy and gravity the result of quantum mechanics? arXiv
**2010**, 1003.1262. [Google Scholar] - Modesto, L.; Randono, A. Entropic corrections to Newton’s law. arXiv
**2010**, 1003.1998. [Google Scholar] - Obregón, O.; Sabido, M.; Tkach, V.I. Entropy using path integrals for quantum black hole models. Gen. Rel. Grav.
**2001**, 33, 913–919. [Google Scholar] [CrossRef] - López-Domínguez, J.C.; Obregón, O.; Sabido, M.; Ramírez, C. Towards noncommutative quantum black holes. Phys. Rev. D
**2006**, 74, 084024. [Google Scholar] [CrossRef] - Zhang, J. Black hole quantum tunnelling and black hole entropy correction. Phys. Lett. B
**2008**, 668, 353–356. [Google Scholar] [CrossRef] - Banerjee, R.; Majhi, B.R. Quantum tunneling and back reaction. Phys. Lett. B
**2008**, 662, 62–65. [Google Scholar] [CrossRef]

© 2010 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license http://creativecommons.org/licenses/by/3.0/.

## Share and Cite

**MDPI and ACS Style**

Obregón, O.
Superstatistics and Gravitation. *Entropy* **2010**, *12*, 2067-2076.
https://doi.org/10.3390/e12092067

**AMA Style**

Obregón O.
Superstatistics and Gravitation. *Entropy*. 2010; 12(9):2067-2076.
https://doi.org/10.3390/e12092067

**Chicago/Turabian Style**

Obregón, Octavio.
2010. "Superstatistics and Gravitation" *Entropy* 12, no. 9: 2067-2076.
https://doi.org/10.3390/e12092067