On the Problem of Formulating Principles in Nonequilibrium Thermodynamics
Abstract
:1. Introduction
2. Interference of Subject and Object in Stationary Processes
3. Relaxation as A Quasi-Stationary Process. Maximum or Minimum Entropy Production?
4. Conclusions
Acknowledgements
References
- Khinchin, A.I. Mathematical Foundations of Statistical Mechanics; Dover Publication Inc: New York, NY, USA, 1949. [Google Scholar]
- Chang, L. Physical Chemistry for the Chemical and Biological Sciences; University science book: Sausalito, CA, USA, 2000. [Google Scholar]
- DeGroot, S.R.; Mazur, P. Non-Equilibrium Thermodynamics; Dover Publications Inc.: New York, NY, USA, 1962. [Google Scholar]
- Chandrasekhar, S. Hydrodynamic And Hydromagnetic Stability; Oxford University Press: Oxford, UK, 1961. [Google Scholar]
- Rayleigh, W. The explanation of certain acoustical phenomena. Nature 1878, 18, 319–321. [Google Scholar] [CrossRef]
- Paltridge, G.W. Climate And Thermodynamic Systems Of Maximum Dissipation. Nature 1979, 279, 630–631. [Google Scholar] [CrossRef]
- Ozawa, H.; Shimokawa, S.; Sakuma, H. Thermodynamics of fluid turbulence: A unified approach to the maximum transport properties. Phys. Rev. E 2001, 64, 026303-1–8. [Google Scholar] [CrossRef]
- Malkus, W.V.R. Outline of A theory of turbulent shear flow. J. Fluid Mech 1956, 1:5, 521–539. [Google Scholar] [CrossRef]
- Di Vita, A. Maximum or minimum entropy production? How to select a necessary criterion of stability for your dissipative fluid (or plasma). Phys. Rev E. in press.
- Dewar, R. Information theory explanation of the fluctuation theorem, maximum entropy production and self-organized criticality in non-equilibrium stationary states. J. Phys. A: Math. Gen. 2003, 36, 631–641. [Google Scholar] [CrossRef]
- Jaynes, E.T. The minimum entropy production principle. Ann. Rev. Phys. Chem. 1980, 31, 579–601. [Google Scholar] [CrossRef]
- Onsager, L. Reciprocal relations in irreversible processes. I. Phys. Rev. 1931, 37, 405–426. [Google Scholar] [CrossRef]
- Onsager, L. Reciprocal relations in irreversible processes. II. Phys. Rev. 1931, 38, 2265–2279. [Google Scholar] [CrossRef]
- Županović, P.; Kuić, D.; Bonačić Lošić, Ž.; Petrov, D.; Juretić, D.; Brumen, M. The maximum entropy production principle and linear irreversible processes. Available online: http://arxiv.org/abs/1003.3680 (accessed on 18 March 2010).
- Enskog, D. Kinetische Theorie der Vorgänge in mässig verdünnten Gasen . Dissertation, Upssala University, Upssala, Sweden, 1917. [Google Scholar]
- Kohler, M. Behandlung von Nichtgleichgewichtsvorgängen mit Hilfe eines Extremalprinzips. Z. Phys. 1948, 124, 772–789. [Google Scholar] [CrossRef]
- Jaynes, E.T. Information theory and statistical mechanics. Phys. Rev. 1957, 106, 620–630. [Google Scholar] [CrossRef]
- Jaynes, E.T. Information theory and statistical mechanics. II. Phys. Rev. 1957, 108, 171–190. [Google Scholar] [CrossRef]
- Jaynes, E.T. On the rationale of maximum-entropy methods. Proc. IEEE. 1982, 70, 939–952. [Google Scholar] [CrossRef]
- Dewar, R.C. Maximum entropy production and the fluctuation theorem. J. Phys. A: Math. Gen. 2005, 38, L371–L381. [Google Scholar] [CrossRef]
- Niven, R.K. Steady state of a dissipative flow-controlled system and the maximum entropy production principle. Phys. Rev. E 2009, 80, 021113–021127. [Google Scholar] [CrossRef]
- Martyushev, L.M.; Seleznev, V.D. Maximum entropy production principle in physics, chemistry and biology. Phys. Rep. 2006, 426, 1–45. [Google Scholar] [CrossRef]
- Bruers, S. A discussion on maximum entropy production and information theory. J. Phys. A: Math. Theor. 2007, 40, 7441–7450. [Google Scholar] [CrossRef]
- Grinstein, G.; Linsker, R. Comments on a derivation and application of the “maximum entropy production” principle. J. Phys. A: Math. Theor. 2007, 40, 9717–9720. [Google Scholar] [CrossRef]
- Prigogine, I. Introduction to Thermodynamics of Irreversible Processes; Interscience Publishers: New York, NY, USA, 1967. [Google Scholar]
- Jeans, J.H. The Mathematical Theory of Electricity and Magnetism; Cambridge University Press: Cambridge, UK, 1923. [Google Scholar]
- Županović, P.; Juretić, D.; Botrić, S. Kirchhoff’s loop law and the maximum entropy production principle. Phys. Rev. E 2004, 70, 056108-1–056108-5. [Google Scholar] [CrossRef]
© 2010 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license http://creativecommons.org/licenses/by/3.0/.
Share and Cite
Županović, P.; Kuić, D.; Juretić, D.; Dobovišek, A. On the Problem of Formulating Principles in Nonequilibrium Thermodynamics. Entropy 2010, 12, 926-931. https://doi.org/10.3390/e12040926
Županović P, Kuić D, Juretić D, Dobovišek A. On the Problem of Formulating Principles in Nonequilibrium Thermodynamics. Entropy. 2010; 12(4):926-931. https://doi.org/10.3390/e12040926
Chicago/Turabian StyleŽupanović, Paško, Domagoj Kuić, Davor Juretić, and Andrej Dobovišek. 2010. "On the Problem of Formulating Principles in Nonequilibrium Thermodynamics" Entropy 12, no. 4: 926-931. https://doi.org/10.3390/e12040926
APA StyleŽupanović, P., Kuić, D., Juretić, D., & Dobovišek, A. (2010). On the Problem of Formulating Principles in Nonequilibrium Thermodynamics. Entropy, 12(4), 926-931. https://doi.org/10.3390/e12040926