# Using Quantum Computers for Quantum Simulation

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Universal Quantum Simulation

#### 2.1. Lloyd’s Method

#### 2.2. Errors and Efficiency

#### 2.3. Universal Hamiltonians

#### 2.4. Efficient Hamiltonian Simulation

## 3. Data Extraction

#### 3.1. Energy Gaps

#### 3.2. Eigenvalues and Eigenvectors

#### 3.3. Correlation Functions and Hermitian Operators

#### 3.4. Quantum Chaos

## 4. Initialization

#### 4.1. Direct State Construction

#### 4.2. Adiabatic Evolution

#### 4.3. Preparing Thermal Equilibrium States

## 5. Hamiltonian Evolution

#### 5.1. Quantum Pseudo-Spectral Method

#### 5.2. Lattice Gas Automata

#### 5.3. Quantum Chemistry

_{2}O and LiH, they show in detail that these methods are feasible. For the simulations, they use the Hartree-Fock approximation for the initial ground state. In some situations, however, this state has a vanishing overlap with the actual ground state. This means it may not be suitable in the dissociation limit or in the limit of large systems. A more accurate approximation of the required ground state can be prepared using adiabatic evolution, see Section 4.2. Aspuru-Guzik et al. confirm numerically that this works efficiently for molecular hydrogen. Data from experiments or classical simulations can be used to provide a good estimate of the gap during the adiabatic evolution, and hence optimise the rate of transformation between the initial and final Hamiltonians.

#### 5.4. Open Quantum Systems

## 6. Fermions and Bosons

#### 6.1. Hubbard Model

#### 6.2. The BCS Hamiltonian

#### 6.3. Initial State Preparation

#### 6.4. Lattice Gauge Theories

## 7. Overview

## 8. Proof-of-Principle Experiments

#### 8.1. NMR Experiments

#### 8.2. Photonic Systems

## 9. Atom Trap and Ion Trap Architectures

#### 9.1. Ion Trap Systems

#### 9.2. Atoms in Optical Lattices

#### 9.3. Atoms in Coupled Cavity Arrays

## 10. Electrons and Excitons

#### 10.1. Spin Lattices

#### 10.2. Quantum Dots

#### 10.3. Superconducting Architectures

## 11. Outlook

## Acknowledgments

## References

- Raedt, K.D.; Michielsen, K.; Raedt, H.D.; Trieu, B.; Arnold, G.; Richter, M.; Lippert, T.; Watanabe, H.; Ito, N. Massive Parallel Quantum Computer Simulator. Comp. Phys. Comm.
**2007**, 176, 121–136. [Google Scholar] [CrossRef] - Verstraete, F.; Porras, D.; Cirac, J.I. Density Matrix Renormalization Group and Periodic Boundary Conditions: A Quantum Information Perspective. Phys. Rev. Lett.
**2004**, 93, 227205. [Google Scholar] [CrossRef] [PubMed] - Feynman, R.P. Simulating Physics wih Computers. Int. J. Theoret. Phys.
**1982**, 21, 467–488. [Google Scholar] [CrossRef] - Deutsch, D. Quantum-theory, the Church-Turing Principle and the Universal Quantum Computer. Proc. R. Soc. Lond. A
**1985**, 400, 97–117. [Google Scholar] [CrossRef] - Shor, P.W. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer. SIAM J. Comput.
**1997**, 26, 1484–1509. [Google Scholar] [CrossRef] - van den Nest, M. Classical Simulation of Quantum Computation, the Gottesman-Knill Theorem, and Slightly Beyond. 2008. arXiv.org e-Print archive. Available online: http://arxiv.org/abs/0811.0898 (accessed on 10 November 2010).
- van den Nest, M. Simulating Quantum Computers with Probabilistic Methods. 2009. arXiv.org e-Print archive. Available online: http://arxiv.org/abs/0911.1624 (accessed on 10 November 2010).
- Lloyd, S. Universal Quantum Simulators. Science
**1996**, 273, 1073–1078. [Google Scholar] [CrossRef] [PubMed] - Aharonov, D.; Ta-Shma, A. Adiabatic Quantum State Generation and Statistical Zero Knowledge. In Proceedings of the 35th Annual ACM Symposium on Theory of Computing, San Diego, CA, USA, 9–11 June 2003; ACM Press: New York, NY, USA, 2003; pp. 20–29. [Google Scholar]
- Vartiainen, J.J.; Mottonen, M.; Salomaa, M.M. Efficient Decomposition of Quantum Gates. Phys. Rev. Lett.
**2004**, 92, 177902. [Google Scholar] [CrossRef] [PubMed] - Suzuki, M. Improved Trotter-like Formula. Phys. Lett. A
**1993**, 180, 232–234. [Google Scholar] [CrossRef] - Trotter, H.F. On the Product of Semi-Groups of Operators. Proc. Am. Math. Phys.
**1959**, 10, 545. [Google Scholar] [CrossRef] - Brown, K.R.; Clark, R.J.; Chuang, I.L. Limitations of Quantum Simulation Examined by a Pairing Hamiltonian Using Nuclear Magnetic Resonance. Phys. Rev. Lett.
**2006**, 97, 050504. [Google Scholar] [CrossRef] [PubMed] - Clark, C.R.; Brown, K.R.; Metodi, T.S.; Gasster, S.D. Resource Requirements for Fault-Tolerant Quantum Simulation: The Transverse Ising Model Ground State. Phys. Rev. A
**2008**, 79, 062314-1–062314-9. [Google Scholar] [CrossRef] - Kendon, V.M.; Nemoto, K.; Munro, W.J. Quantum analogue computing. Phil. Trans. Roy. Soc. A
**2010**, 368, 3609–3620. [Google Scholar] [CrossRef] [PubMed] - Wocjan, P.; Janzing, D.; Beth, T. Simulating Arbitrary Pair-Interactions by a Given Hamiltonian: Graph-Theoretical Bounds on the Time-Complexity. Quantum Inf. Quantum Comput.
**2002**, 2, 117–132. [Google Scholar] - Wocjan, P.; Roetteler, M.; Janzing, D.; Beth, T. Universal Simulation of Hamiltonians Using a Finite Set of Control Operations. Quantum Inf. Quantum Comput.
**2002**, 2, 133. [Google Scholar] - Wocjan, P.; Rötteler, M.; Janzing, D.; Beth, T. Simulating Hamiltonians in Quantum Networks: Efficient Schemes and Complexity Bounds. Phys. Rev. A
**2002**, 65, 042309. [Google Scholar] [CrossRef] - Dodd, J.L.; Nielsen, M.A.; Bremner, M.J.; Thew, R.T. Universal Quantum Computation and Simulation Using Any Entangling Hamiltonian and Local Unitaries. Phys. Rev. A
**2002**, 65, 040301. [Google Scholar] [CrossRef] - Bremner, M.J.; Dawson, C.M.; Dodd, J.L.; Gilchrist, A.; Harrow, A.W.; Mortimer, D.; Nielsen, M.A.; Oscorne, T.J. Practical Scheme for Quantum Computation with Any Two-Qubit Entangling Gate. Phys. Rev. Lett.
**2002**, 89, 247902. [Google Scholar] [CrossRef] [PubMed] - Nielsen, M.A.; Bremner, M.J.; Dodd, J.L.; Childs, A.M.; Dawson, C.M. Universal Simulation of Hamiltonian Dynamics for Quantum Systems with Finite-Dimensional State Spaces. Phys. Rev. A
**2002**, 66, 022317. [Google Scholar] [CrossRef] - Bremner, M.J.; Dodd, J.L.; Nielsen, M.A.; Bacon, D. Fungible Dynamics: There are Only Two Types of Entangling Multiple-Qubit Interactions. Phys. Rev. A
**2004**, 69, 012313. [Google Scholar] [CrossRef] - McKague, M.; Mosca, M.; Gisin, N. Simulating Quantum Systems Using Real Hilbert Spaces. Phys. Rev. Lett.
**2009**, 102, 020505. [Google Scholar] [CrossRef] [PubMed] - Childs, A.M.; Leung, D.; Mancinska, L.; Ozols, M. Characterization of Universal Two-Qubit Hamiltonians. Quantum Inf. Comput.
**2011**, 11, 19–39. [Google Scholar] - Berry, D.W.; Ahokas, G.; Cleve, R.; Sanders, B.C. Efficient Quantum Algorithms for Simulating Sparse Hamiltonians. Commun. Math. Phys.
**2007**, 270, 359–371. [Google Scholar] [CrossRef] - Papageorgiou, A.; Zhang, C. On the Efficiency of Quantum Algorithms for Hamiltonian Simulation. 2010. arXiv.org e-Print archive. Available online: http://arxiv.org/abs/1005.1318 (accessed on 10 November 2010).
- Childs, A.M.; Kothari, R. Limitations on the Simulation of Non-Sparse Hamiltonians. Quantum Inf. Comput.
**2010**, 10, 669–684. [Google Scholar] - Childs, A.M.; Kothari, R. Simulating sparse Hamiltonians With Star Decompositions. 2010. arXiv.org e-Print archive. Available online: http://arxiv.org/abs/1003.3683 (accessed on 10 November 2010).
- Childs, A.M. On the Relationship Between Continuous- and Discrete-Time Quantum Walk. Commun. Math. Phys.
**2010**, 294, 581–603. [Google Scholar] [CrossRef] - Bennett, C.H.; Cirac, J.I.; Leifer, M.S.; Leung, D.W.; Linden, N.; Popescu, S.; Vidal, G. Optimal Simulation of Two-Qubit Hamiltonians Using General Local Operations. Phys. Rev. A
**2002**, 66, 012305. [Google Scholar] [CrossRef] - Dür, W.; Bremner, M.J.; Briegel, H.J. Quantum Simulation of Interacting High-Dimensional Systems:The Influence of Noise. Phys. Rev. A
**2008**, 78, 052325. [Google Scholar] [CrossRef] - Bravyi, S.; DiVincenzo, D.P.; Loss, D.; Terhal, B.M. Quantum Simulation of Many-Body Hamiltonians Using Perturbation Theory with Bounded-Strength Interactions. Phys. Rev. Lett.
**2008**, 101, 070503. [Google Scholar] [CrossRef] [PubMed] - Vidal, G.; Cirac, J.I. Nonlocal Hamiltonian Simulation Assisted by Local Operations and Classical Communication. Phys. Rev. A
**2002**, 66, 022315. [Google Scholar] [CrossRef] - Hammerer, K.; Vidal, G.; Cirac, J.I. Characterization of Nonlocal Gates. Phys. Rev. A
**2002**, 66, 062321. [Google Scholar] [CrossRef] - Haselgrove, H.L.; Nielsen, M.A.; Osborne, T.J. Practicality of Time-Optimal Two-Qubit Hamiltonian Simulation. Phys. Rev. A
**2003**, 68, 042303. [Google Scholar] [CrossRef] - Leung, D. Simulation and Reversal of n-Qubit Hamiltonians Using Hadamard Matrices. J. Mod. Opt.
**2002**, 49, 1199–1217. [Google Scholar] [CrossRef] - Wu, L.A.; Byrd, M.S.; Lidar, D.A. Polynomial-Time Simulation of Pairing Models on a Quantum Computer. Phys. Rev. Lett.
**2002**, 89, 057904. [Google Scholar] [CrossRef] [PubMed] - Abrams, D.S.; Lloyd, S. Quantum Algorithm Providing Exponential Speed Increase for Finding Eigenvalues and Eigenvectors. Phys. Rev. Lett.
**1999**, 83, 5162–5165. [Google Scholar] [CrossRef] - Somma, R.; Ortiz, G.; Gubernatis, J.E.; Knill, E.; Laflamme, R. Simulating Physical Phenomena by Quantum Networks. Phys. Rev. A
**2002**, 65, 042323. [Google Scholar] [CrossRef] - O’Brien, J.L.; Pryde, G.J.; Gilchrist, A.; James, D.F.V.; Langford, N.K.; Ralph, T.C.; White, A.G. Quantum Process Tomography of a Controlled-NOT Gate. Phys. Rev. Lett.
**2004**, 93, 080502. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Mohseni, M.; Lidar, D.A. Direct Characterization of Quantum Dynamics. Phys. Rev. Lett.
**2006**, 97, 170501. [Google Scholar] [CrossRef] [PubMed] - Emerson, J.; Silva, M.; Moussa, O.; Ryan, C.; Laforest, M.; Baugh, J.; Cory, D.G.; Laflamme, R. Symmetrized Characterization of Noisy Quantum Processes. Science
**2007**, 317, 1893–1896. [Google Scholar] [CrossRef] [PubMed] - Cleve, R.; Ekert, A.; Macchiavello, C.; Mosca, M. Quantum Algorithms Revisited. Proc. Roy. Soc. London A
**1998**, 454, 339. [Google Scholar] [CrossRef] - Georgeot, B.; Shepelyansky, D.L. Exponential Gain in Quantum Computing of Quantum Chaos and Localization. Phys. Rev. Lett.
**2001**, 86, 2890–2893. [Google Scholar] [CrossRef] [PubMed] - Schack, R. Using a Quantum Computer to Investigate Quantum Chaos. Phys. Rev. A
**1998**, 57, 1634–1635. [Google Scholar] [CrossRef] - Brun, T.A.; Schack, R. Realizing the Quantum Baker’s Map on a NMR Quantum Computer. Phys. Rev. A
**1999**, 59, 2649–2658. [Google Scholar] [CrossRef] - Lévi, B.; Georgeot, B. Quantum Computation of a Complex System: The Kicked Harper Model. Phys. Rev. E
**2004**, 70, 056218. [Google Scholar] [CrossRef] [PubMed] - Georgeot, B. Quantum Computing of Poincaré Recurrences and Periodic Orbits. Phys. Rev. A
**2004**, 69, 032301. [Google Scholar] [CrossRef] - Poulin, D.; Laflamme, R.; Milburn, G.J.; Paz, J.P. Testing Integrability with a Single bit of Quantum Information. Phys. Rev. A
**2003**, 68, 022302. [Google Scholar] [CrossRef] - Poulin, D.; Blume-Kohout, R.; Laflamme, R.; Ollivier, H. Exponential Speedup with a Single Bit of Quantum Information: Measuring the Average Fidelity Decay. Phys. Rev. Lett.
**2004**, 92, 177906. [Google Scholar] [CrossRef] [PubMed] - Georgeot, B. Complexity of Chaos and Quantum Computation. Math. Struct. Comput. Sci.
**2007**, 17, 1221–1263. [Google Scholar] [CrossRef] - Soklakov, A.N.; Schack, R. Efficient State Preparation for a Register of Quantum Bits. Phys. Rev. A
**2006**, 73, 012307. [Google Scholar] [CrossRef] - Soklakov, A.N.; Schack, R. State Preparation Based on Grover’s Algorithm in the Presence of Global Information About the State. Opt. Spectrosc.
**2005**, 99, 211–217. [Google Scholar] [CrossRef] - Plesch, M.; Brukner, C. Efficient Quantum State Preparation. 2010. arXiv.org e-Print archive. Available online: http://arxiv.org/abs/1003.5760 (accessed on 10 November 2010).
- Poulin, D.; Wocjan, P. Preparing Ground States of Quantum Many-Body Systems on a Quantum Computer. Phys. Rev. Lett.
**2009**, 102, 130503. [Google Scholar] [CrossRef] [PubMed] - Ortiz, G.; Gubernatis, J.E.; Laflamme, R. Quantum Algorithms for Fermionic Simulations. Phys. Rev. A.
**2001**, 64, 022319. [Google Scholar] [CrossRef] - Dziarmaga, J.; Rams, M.M. Adiabatic Dynamics of an Inhomogeneous Quantum Phase Transition: The Case of z > 1 Dynamical Exponent. New J. Phys.
**2010**, 12, 103002. [Google Scholar] [CrossRef] - Oh, S. Quantum Computational Method of Finding the Ground-State Energy and Expectation Values. Phys. Rev. A
**2008**, 77, 012326. [Google Scholar] [CrossRef] - Boixo, S.; Knill, E.; Somma, R.D. Eigenpath Traversal by Phase Randomization. Quantum Inf. Comput.
**2009**, 9, 0833–0855. [Google Scholar] - Terhal, B.M.; DiVincenzo, D.P. Problem of Equilibration and the Computation of Correlation Functions on a Quantum Computer. Phys. Rev. A
**2000**. [Google Scholar] [CrossRef] - Poulin, D.; Wocjan, P. Sampling from the Thermal Quantum Gibbs State and Evaluating Partition Functions with a Quantum Computer. Phys. Rev. Lett.
**2009**, 103, 220502. [Google Scholar] [CrossRef] [PubMed] - Temme, K.; Osborne, T.J.; Vollbrecht, K.G.; Poulin, D.; Verstraete, F. Quantum Metropolis Sampling. 2009. arXiv.org e-Print archive. Available online: http://arxiv.org/abs/0911.3635 (accessed on 10 November 2010).
- Jozsa, R. Quantum Algorithms and the Fourier Transform. Proc. Roy. Soc. Lon. Ser. A
**1998**, 454, 323–337. [Google Scholar] [CrossRef] - Browne, D. Efficient Classical Simulation of the Semi-Classical Quantum Fourier Transform. New J. Phys.
**2007**. [Google Scholar] [CrossRef] - Wiesner, S. Simulations of Many-Body Quantum Systems by a Quantum Computer. 1996. arXiv.org e-Print archive. Available online: http://arxiv.org/abs/quant-ph/9603028v1 (accessed on 10 November 2010).
- Zalka, C. Efficient Simulation of Quantum Systems by Quantum Computers. Forschr. Phys.
**1998**, 46, 877–879. [Google Scholar] [CrossRef] - Zalka, C. Simulating Quantum Systems on a Quantum Computer. Proc. R. Soc. Lond. A
**1998**, 454, 313–322. [Google Scholar] [CrossRef] - Benenti, G.; Strini, G. Quantum Simulation of the Single-Particle Schrödinger Equation. Am. J. Phys.
**2008**, 76, 657–662. [Google Scholar] [CrossRef] - Frisch, U.; Hasslacher, B.; Pomeau, Y. Lattice-Gas Automata for the Navier-Stokes Equation. Phys. Rev. Lett.
**1986**, 56, 1505–1508. [Google Scholar] [CrossRef] [PubMed] - Succi, S.; Benzi, R. Lattice Boltzmann Equation for Quantum Mechanics. Phys. D
**1993**, 69, 327–332. [Google Scholar] [CrossRef] - Meyer, D.A. From Quantum Cellular Automata to Quantum Lattice Gases. J. Stat. Phys.
**1996**, 85, 551–574. [Google Scholar] [CrossRef] - Boghosian, B.M.; Taylor, W. Simulating Quantum Mechanics on a Quantum Computer. Phys. D
**1998**, 120, 30–42. [Google Scholar] [CrossRef] - Boghosian, B.M.; Taylor, W. Quantum Lattice-Gas Model for the Many-Particle Schrödinger Equation in d Dimensions. Phys. Rev. E
**1998**, 57, 54–66. [Google Scholar] [CrossRef] - Aspuru-Guzik, A.; Dutoi, A.D.; Love, P.J.; Head-Gordon, M. Simulated Quantum Computation of Molecular Energies. Science
**2005**, 309, 1704–1707. [Google Scholar] [CrossRef] [PubMed] - Wang, H.; Kais, S.; Aspuru-Guzik, A.; Hoffmann, M.R. Quantum Algorithm for Obtaining the Energy Spectrum of Molecular Systems. Phys. Chem. Chem. Phys.
**2008**, 10, 5388–5393. [Google Scholar] [CrossRef] [PubMed] - Kassal, I.; Jordan, S.P.; Love, P.J.; Mohseni, M.; Aspuru-Guzik, A. Polynomial-Time Quantum Algorithm for the Simulation of Chemical Dynamics. Proc. Nat. Acad. Sci.
**2008**, 105, 18681–18686. [Google Scholar] [CrossRef] [PubMed] - Bacon, D.; Childs, A.M.; Chuang, I.L.; Kempe, J.; Leung, D.W.; Zhou, X. Universal Simulation of Markovian Quantum Dynamics. Phys. Rev. A
**2001**, 64, 062302. [Google Scholar] [CrossRef] - Verstraete, F.; Cirac, J.I. Continuous Matrix Product States for Quantum Fields. Phys. Rev. Lett.
**2010**, 104, 190405. [Google Scholar] [CrossRef] [PubMed] - Haegeman, J.; Cirac, J.I.; Osborne, T.J.; Verschelde, H.; Verstraete, F. Applying the Variational Principle to (1+1)-Dimensional Quantum Field Theories. 2010. arXiv.org e-Print archive. Available online: http://arxiv.org/abs/1006.2409 (accessed on 10 November 2010).
- Abrams, D.S.; Lloyd, S. Simulation of Many-Body Fermi Systems on a Universal Quantum Computer. Phys. Rev. Lett.
**1997**, 79, 2586–2589. [Google Scholar] [CrossRef] - Bardeen, J.; Cooper, L.N.; Schrieffer, J.R. Theory of Superconductivity. Phys. Rev.
**1957**, 108, 1175–1204. [Google Scholar] [CrossRef] - Knill, E.; Laflamme, R.; Martinez, R.; Tseng, C. An Algorithmic Benchmark for Quantum Information Processing. Nature
**2000**, 404, 368–370. [Google Scholar] [CrossRef] [PubMed] - Brown, K.L.; De, S.; Kendon, V.M.; Munro, W.J. Ancilla-Based Quantum Simulation. 2010. arXiv.org e-Print archive. Available online: http://arxiv.org/abs/1011.2984 (accessed on 15 November 2010).
- Somma, R.D.; Ortiz, G.; Knill, E.H.; Gubernatis, J. Quantum Simulations of Physics Problems. In Quantum Information and Computation; Donkor, E., Pirich, A., Brandt, H., Eds.; SPIE: Bellingham, WA, USA, 2003; Volume 5105, pp. 96–103. [Google Scholar]
- Ward, N.J.; Kassal, I.; Guzik, A.A. Preparation of Many-Body States for Quantum Simulation. J. Chem. Phys.
**2009**, 130, 194105. [Google Scholar] [CrossRef] [PubMed] - Byrnes, T.; Yamamoto, Y. Simulating Lattice Gauge Theories on a Quantum Computer. Phys. Rev. A
**2006**, 73, 022328. [Google Scholar] [CrossRef] - Schützhold, R.; Mostame, S. Quantum Simulator for the O(3) Nonlinear Sigma Model. JETP Lett.
**2005**, 82, 248–252. [Google Scholar] [CrossRef] - Tewari, S.; Scarola, V.W.; Senthil, T.; Sarma, S.D. Emergence of Artificial Photons in an Optical Lattice. Phys. Rev. Lett.
**2006**, 97, 200401. [Google Scholar] [CrossRef] [PubMed] - Cirac, J.I.; Maraner, P.; Pachos, J.K. Cold Atom Simulation of Interacting Relativistic Quantum Field Theories. 2010. arXiv.org e-Print archive. Available online: http://arxiv.org/abs/1006.2975 (accessed on 10 November 2010).
- Devitt, S.J.; Nemoto, K.; Munro, W.J. The Idiots Guide to Quantum Error Correction, 2009. arXiv.org e-Print archive. Available online: http://arxiv.org/abs/0905.2794 (accessed on 10 November 2010).
- Buluta, I.; Nori, F. Quantum Simulators. Science
**2009**, 326, 108–111. [Google Scholar] [CrossRef] [PubMed] - Jones, J.A. NMR Quantum Computation: A Critical Evaluation. Fortschr. Phys.
**2000**, 48, 909–924. [Google Scholar] [CrossRef] - Peng, X.; Du, J.; Suter, D. Quantum Phase Transition of Ground-State Entanglement in a Heisenberg Spin Chain Simulated in an NMR Quantum Computer. Phys. Rev. A
**2005**, 71, 012307. [Google Scholar] [CrossRef] - Peng, X.; Zhang, J.; Du, J.; Suter, D. Quantum Simulation of a System with Competing Two- and Three-Body Interactions. Phys. Rev. Lett.
**2009**, 103, 140501. [Google Scholar] [CrossRef] [PubMed] - Khitrin, A.K.; Fung, B.M. NMR Simulation of an Eight-State Quantum System. Phys. Rev. A
**2001**, 64, 032306. [Google Scholar] [CrossRef] - Zhang, J.; Long, G.L.; Zhang, W.; Deng, Z.; Liu, W.; Lu, Z. Simulation of Heisenberg XY Interactions and Realization of a Perfect State Transfer in Spin Chains Using Liquid Nuclear Magnetic Resonance. Phys. Rev. A
**2005**, 72, 012331. [Google Scholar] [CrossRef] - Álvarez, G.A.; Suter, D. NMR Quantum Simulation of Localization Effects Induced by Decoherence. Phys. Rev. Lett.
**2010**, 104, 230403. [Google Scholar] [CrossRef] [PubMed] - Tseng, C.H.; Somaroo, S.; Sharf, Y.; Knill, E.; Laflamme, R.; Havel, T.F.; Cory, D.G. Quantum Simulation of a Three-Body-Interaction Hamiltonian on an NMR Quantum Computer. Phys. Rev. A
**1999**, 61, 012302. [Google Scholar] [CrossRef] - Liu, W.; Zhang, J.; Deng, Z.; Long, G. Simulation of General Three-Body Interactions in a Nuclear Magnetic Resonance Ensemble Quantum Computer. Sci. China Ser. G
**2008**, 51, 1089–1096. [Google Scholar] [CrossRef] - Negrevergne, C.; Somma, R.; Ortiz, G.; Knill, E.; Laflamme, R. Liquid-state NMR Simulations of Quantum Many-Body Problems. Phys. Rev. A
**2005**, 71, 032344. [Google Scholar] [CrossRef] - Somaroo, S.; Tseng, C.H.; Havel, T.F.; Laflamme, R.; Cory, D.G. Quantum Simulations on a Quantum Computer. Phys. Rev. Lett.
**1999**, 82, 5381–5383. [Google Scholar] [CrossRef] - Du, J.; Xu, N.; Peng, X.; Wang, P.; Wu, S.; Lu, D. NMR Implementation of a Molecular Hydrogen Quantum Simulation with Adiabatic State Preparation. Phys. Rev. Lett.
**2010**, 104, 030502. [Google Scholar] [CrossRef] [PubMed] - Lanyon, B.P.; Whitfield, J.D.; Gillett, G.G.; Goggin, M.E.; Almeida, M.P.; Kassal, I.; Biamonte, J.D.; Mohseni, M.; Powell, B.J.; Barbieri, M.; Aspuru-Guzik, A.; White, A.G. Towards Quantum Chemistry on a Quantum Computer. Nat. Chem.
**2010**, 2, 106–111. [Google Scholar] [CrossRef] [PubMed] - Ma, X.; Dakic, B.; Naylor, W.; Zeilinger, A.; Walther, P. Quantum Simulation of a Frustrated Heisenberg Spin System. 2010. arXiv.org e-Print archive. Available online: http://arxiv.org/abs/1008.4116 (accessed on 10 November 2010).
- Kok, P.; Munro, W.J.; Nemoto, K.; Ralph, T.C.; Dowling, J.P.; Milburn, G.J. Linear Optical Quantum Computing with Photonic Qubits. Rev. Mod. Phys.
**2007**, 79, 135–174. [Google Scholar] [CrossRef] - O’Brien, J.L.; Furusawa, A.; Vuckovic, J. Photonic Quantum Technologies. Nat. Photonic.
**2009**, 3, 687–695. [Google Scholar] [CrossRef] - Leibrandt, D.R.; Labaziewicz, J.; Clark, R.J.; Chuang, I.L.; Epstein, R.; Ospelkaus, C.; Wesenberg, J.; Bollinger, J.; Leibfried, D.; Wineland, D.; Stick, D.; Sterk, J.; Monroe, C.; Pai, C.S.; Low, Y.; Frahm, R.; Slusher, R.E. Demonstration of a Scalable, Multiplexed Ion Trap for Quantum Information Processing. Quantum Inf. Comput.
**2009**, 9, 0901–0919. [Google Scholar] - Schaetz, T.; Friedenauer, A.; Schmitz, H.; Petersen, L.; Kahra, S. Towards (Scalable) Quantum Simulations in Ion Traps. J. Mod. Opt.
**2007**, 54, 2317–2325. [Google Scholar] [CrossRef] - Greiner, M.; Mandel, O.; Esslinger, T.; Hansch, T.W.; Bloch, I. Quantum Phase Transition from a Superfluid to a Mott Insulator in a Gas of Ultracold Atoms. Nature
**2002**, 415, 39–44. [Google Scholar] [CrossRef] [PubMed] - Wineland, D.J. Quantum Information Processing and Quantum Control with Trapped Atomic Ions. Phys. Scr.
**2009**, T137, 014007. [Google Scholar] [CrossRef] - Bloch, I.; Dalibard, J.; Zwerger, W. Many-Body Physics with Ultracold Gases. Rev. Mod. Phys.
**2008**, 80, 885–964. [Google Scholar] [CrossRef] - Jané, E.; Vidal, G.; Dür, W.; Zoller, P.; Cirac, J.I. Simuation of Quantum Dynamics with Quantum Optical Systems. Quantum Inf. Comput.
**2003**, 3, 15–37. [Google Scholar] - Kraus, C.V.; Wolf, M.M.; Cirac, I.J. Quantum Simulations Under Translational Symmetry. Phys. Rev. A
**2007**, 75, 022303. [Google Scholar] [CrossRef] - Clark, R.J.; Lin, T.; Brown, K.R.; Chuang, I.L. A Two-Dimensional Lattice Ion Trap for Quantum Simulation. J. Appl. Phys.
**2009**, 105, 013114. [Google Scholar] [CrossRef] - Buluta, I.M.; Hasegawa, S. Designing an Ion Trap for Quantum Simulation. Quantum Inf. Comput.
**2009**, 9, 361–375. [Google Scholar] - Deng, X.L.; Porras, D.; Cirac, J.I. Effective Spin Quantum Phases in Systems of Trapped Ions. Phys. Rev. A
**2005**, 72, 063407. [Google Scholar] [CrossRef] - Porras, D.; Cirac, J.I. Effective Quantum Spin Systems with Trapped Ions. Phys. Rev. Lett.
**2004**, 92, 207901. [Google Scholar] [CrossRef] [PubMed] - Porras, D.; Cirac, J.I. Bose-Einstein Condensation and Strong-Correlation Behavior of Phonons in Ion Traps. Phys. Rev. Lett.
**2004**, 93, 263602. [Google Scholar] [CrossRef] [PubMed] - Friedenauer, A.; Schmitz, H.; Glueckert, J.T.; Porras, D.; Schaetz, T. Simulating a Quantum Magnet with Trapped Ions. Nat. Phys.
**2008**, 4, 757–761. [Google Scholar] [CrossRef] - Gerritsma, R.; Lanyon, B.; Kirchmair, G.; Zähringer, F.; Hempel, C.; Casanova, J.; García-Ripoll, J.J.; Solano, E.; Blatt, R.; Roos, C.F. Quantum Simulation of the Klein Paradox. 2010. arXiv.org e-Print archive. Available online: http://arxiv.org/abs/1007.3683 (accessed on 10 November 2010).
- Edwards, E.E.; Korenblit, S.; Kim, K.; Islam, R.; Chang, M.S.; Freericks, J.K.; Lin, G.D.; Duan, L.M.; Monroe, C. Quantum Simulation and Phase Diagram of the Transverse Field Ising Model with Three Atomic Spins. Phys. Rev. B
**2010**, 82, 060412(R). [Google Scholar] [CrossRef] - Gerritsma, R.; Kirchmair, G.; Zahringer, F.; Solano, E.; Blatt, R.; Roos, C.F. Quantum simulation of the Dirac equation. Nature
**2010**, 463, 68–71. [Google Scholar] [CrossRef] [PubMed] - Trotzky, S.; Pollet, L.; Gerbier, F.; Schnorrberger, U.; Bloch, I.; Prokof’ev, N.V.; Svistunov, B.; Troyer, M. Suppression of the Critical Temperature for Superfluidity Near the Mott Transition: Validating a Quantum Simulator. Nat. Phys. Online
**2010**. [Google Scholar] [CrossRef] - Johnson, P.R.; Tiesinga, E.; Porto, J.V.; Williams, C.J. Effective Three-Body Interactions of Neutral Bosons in Optical Lattices. New J.Phys.
**2009**, 11, 093022. [Google Scholar] [CrossRef] - Ho, A.F.; Cazalilla, M.A.; Giamarchi, T. Quantum simulation of the Hubbard model: The attractive route. Phys. Rev. A
**2009**, 79, 033620. [Google Scholar] [CrossRef] - Kinoshita, T.; Wenger, T.; Weiss, D.S. Observation of a One-Dimensional Tonks-Girardeau Gas. Science
**2004**, 305, 1125–1128. [Google Scholar] [CrossRef] [PubMed] - Cho, J.; Angelakis, D.G.; Bose, S. Simulation of High-Spin Heisenberg Models in Coupled Cavities. Phys. Rev. A
**2008**, 78, 062338. [Google Scholar] [CrossRef] - Kay, A.; Angelakis, D.G. Reproducing Spin Lattice Models in Strongly Coupled Atom-Cavity Systems. Eur. Phys. Lett.
**2008**, 84, 20001. [Google Scholar] [CrossRef] - Chen, Z.X.; Zhou, Z.W.; Zhou, X.; Zhou, X.F.; Guo, G.C. Quantum Simulation of Heisenberg Spin Chains With Next-Nearest-Neighbor Interactions in Coupled Cavities. Phys. Rev. A
**2010**, 81, 022303. [Google Scholar] [CrossRef] - Ivanov, P.A.; Ivanov, S.S.; Vitanov, N.V.; Mering, A.; Fleischhauer, M.; Singer, K. Simulation of a Quantum Phase Transition of Polaritons with Trapped Ions. Phys. Rev. A
**2009**, 80, 060301. [Google Scholar] [CrossRef] - Mostame, S.; Schützhold, R. Quantum Simulator for the Ising Model with Electrons Floating on a Helium Film. Phys. Rev. Lett.
**2008**, 101, 220501. [Google Scholar] [CrossRef] [PubMed] - Byrnes, T.; Recher, P.; Kim, N.Y.; Utsunomiya, S.; Yamamoto, Y. Quantum Simulator for the Hubbard Model with Long-Range Coulomb Interactions Using Surface Acoustic Waves. Phys. Rev. Lett.
**2007**, 99, 016405. [Google Scholar] [CrossRef] [PubMed] - Smirnov, A.Y.; Savel’ev, S.; Mourokh, L.G.; Nori, F. Modelling Chemical Reactions Using Semiconductor Quantum Dots. Eur. Phys. Lett.
**2007**, 80, 67008. [Google Scholar] [CrossRef] - Gaudreau, L.; Studenikin, S.A.; Sachrajda, A.S.; Zawadzki, P.; Kam, A.; Lapointe, J.; Korkusinski, M.; Hawrylak, P. Stability Diagram of a Few-Electron Triple Dot. Phys. Rev. Lett.
**2006**, 97, 036807. [Google Scholar] [CrossRef] [PubMed] - Vidan, A.; Westervelt, R.M.; Stopa, M.; Hanson, M.; Gossard, A.C. Triple Quantum Dot Charging Rectifier. Appl. Phys. Lett.
**2004**, 85, 3602–3604. [Google Scholar] [CrossRef] - Pritchett, E.J.; Benjamin, C.; Galiautdinov, A.; Geller, M.R.; Sornborger, A.T.; Stancil, P.C.; Martinis, J.M. Quantum Simulation of Molecular Collisions with Superconducting Qubits. 2010. arXiv.org e-Print archive. Available online: http://arxiv.org/abs/1008.0701 (accessed on 10 November 2010).

**Figure 1.**A quantum circuit for measuring correlation functions, X is the Pauli ${\sigma}_{x}$ operator, U(t) is the time evolution of the system, and Hermitian operators $\widehat{A}$ and $\widehat{B}$ are operators (expressible as a sum of unitary operators) for which the correlation function is required. The inputs are a single qubit ancilla $|a\rangle $ prepared in the state $(|0\rangle +|1\rangle )/\sqrt{2}$ and $|\psi \rangle $, the state of the quantum system for which the correlation function is required. $\langle 2{\sigma}_{+}\rangle $ is the output obtained when the ancilla is measured in the $2{\sigma}_{+}={\sigma}_{x}+{\sigma}_{y}$ basis, which provides an estimate of the correlation function.

© 2010 by the authors licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).

## Share and Cite

**MDPI and ACS Style**

Brown, K.L.; Munro, W.J.; Kendon, V.M.
Using Quantum Computers for Quantum Simulation. *Entropy* **2010**, *12*, 2268-2307.
https://doi.org/10.3390/e12112268

**AMA Style**

Brown KL, Munro WJ, Kendon VM.
Using Quantum Computers for Quantum Simulation. *Entropy*. 2010; 12(11):2268-2307.
https://doi.org/10.3390/e12112268

**Chicago/Turabian Style**

Brown, Katherine L., William J. Munro, and Vivien M. Kendon.
2010. "Using Quantum Computers for Quantum Simulation" *Entropy* 12, no. 11: 2268-2307.
https://doi.org/10.3390/e12112268