AI-Generated Videos: Influencing Trustworthiness, Awe, and Behavioral Intention in Space Tourism E-Commerce
Abstract
1. Introduction
- (1)
- How do the content and technical quality of AI-generated space tourism videos differentiate and influence trustworthiness, awe, and behavioral intention?
- (2)
- How do tourists’ perceived authenticity and perceived risk of AI-generated space tourism videos differentially affect the abovementioned psychological mechanisms?
- (3)
- In AI-generated space tourism videos, do video attributes (content quality, technical quality) and tourists’ personal perception (perceived authenticity and perceived risk) influence consumers’ behavioral intentions through two differentiated mediating paths of trustworthiness and awe?
2. Literature Review and Hypothesis Construction
2.1. Review of Previous Studies on AI-Generated Video and Space Tourism E-Commerce
2.2. Cognitive–Affective–Behavioral Framework
2.3. Cognitive Assessment: Attribute of AI-Generated Space Tourism Video
2.3.1. AI-Generated Space Tourism Video Attributes and Tourist Affective Responses
2.3.2. AI-Generated Space Tourism Video Attributes and Tourist Behavioral Intention
2.4. Cognitive Assessment: Personal Perception of AI-Generated Space Tourism Video
2.4.1. AI-Generated Space Tourism Video Personal Perception and Tourist Affective Responses
2.4.2. AI-Generated Space Tourism Video Personal Perception and Tourist Behavioral Intention
2.5. AI-Generated Space Tourism Video Affective Response and Behavioral Intention
2.6. The Mediating Role of Trustworthiness and Awe
3. Methodology
3.1. Research Objects
3.2. Measurement Items
3.3. Data Collection and Sampling
3.4. Data Analysis
4. Results and Discussion
4.1. Measurement Model Assessment
4.2. Structural Model Evaluation
4.3. Discussion
5. Conclusions
5.1. Theoretical Implications
5.2. Practical Implications
5.3. Limitations and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Screenshots of an AI-Generated Space Tourism Video



Appendix A.2. Measurement Items
| Construct/Items | Sources |
|---|---|
| Content quality | [29] |
| 1. The content of the AI-generated space tourism video is rich in information. | |
| 2. The content of the AI-generated space tourism video is unique in information. | |
| 3. The logicality of the AI-generated space tourism video is clear in its structure. | |
| 4. The content of the AI-generated space tourism video is infectious. | |
| 5. The content of the AI-generated space tourism video is understandable. | |
| Technical quality | [71] |
| 1. The scene of the AI-generated space tourism video has harmony. | |
| 2. The scene setting of the AI-generated space tourism video is reasonable. | |
| 3. The scene of the AI-generated space tourism video can switch consistently. | |
| 4. The image of the AI-generated space tourism video is high-definition and smooth. | |
| Perceived authenticity | [72] |
| 1. The scene of space tourism presented is genuine. | |
| 2. The experience of space tourism presented is genuine. | |
| 3. The atmosphere of space tourism presented conveys genuineness. | |
| 4. The scene of space tourism presented enabled me to immerse myself. | |
| 5. The scene of space tourism presented enabled me to perceive space genuinely. | |
| Perceived risk | [14] |
| 1. The AI-generated space tourism video contains inaccuracies. | |
| 2. The AI-generated space tourism experience video is insufficient. | |
| 3. The AI-generated space tourism video is subject to tampering during transmission. | |
| 4. Watching an AI-generated space tourism video makes me feel uncomfortable. | |
| 5. Watching an AI-generated space tourism video makes me anxious about security. | |
| Trustworthiness | [73] |
| 1. The AI-generated space tourism video is dependable. | |
| 2. The AI-generated space tourism video is honest. | |
| 3. The AI-generated space tourism video is reliable. | |
| 4. The AI-generated space tourism video is sincere. | |
| 5. The AI-generated space tourism video is trustworthy. | |
| Awe | [30] |
| 1. The AI-generated space tourism video makes me feel vast in the universe. | |
| 2. The AI-generated space tourism video makes me feel shocked by the universe. | |
| 3. The AI-generated space tourism video instills in me reverence towards the universe. | |
| 4. The AI-generated space tourism video makes me feel that space tourism is unusual. | |
| Behavioral intention | [74] |
| 1. I plan to purchase space tourism services on e-commerce platforms in the future. | |
| 2. I am willing to purchase space tourism services on e-commerce platforms. | |
| 3. I recommend others to purchase space tourism services on e-commerce platforms. |
References
- Samsu, R.A.; Budiawan, L.N.; Yinnie, C.; Muhroji, J.; Redjeki, F. The Impact of Influencer Marketing on Consumer Decision-Making in E-Commerce Platforms. RIGGS J. Artif. Intell. Digit. Bus. 2025, 4, 5257–5261. [Google Scholar] [CrossRef]
- Kim, M.J.; Hall, C.M.; Kwon, O. Space tourism: Do age and gender make a difference in risk perception? J. Hosp. Tour. Manag. 2023, 57, 13–17. [Google Scholar] [CrossRef]
- Kim, M.J.; Hall, C.M.; Kwon, O.; Hwang, K.; Kim, J.S. Orbital and sub-orbital space tourism: Motivation, constraint and artificial intelligence. Tour. Rev. 2024, 79, 392–407. [Google Scholar] [CrossRef]
- Olya, H.G.; Han, H. Antecedents of space traveler behavioral intention. J. Travel Res. 2020, 59, 528–544. [Google Scholar] [CrossRef]
- Hu, T.-L.; Chao, C.-M.; Wu, C.-C.; Lin, C.-H.; Chi, S.-C. Digital Franchising in the Age of Transformation: Insights from the Motivation-Opportunity-Ability Framework. J. Theor. Appl. Electron. Commer. Res. 2025, 20, 107. [Google Scholar] [CrossRef]
- Loy, L.S.; Steppler, K.; Kliachko, I.; Kuhlmann, J.; Menzel, C.; Schick, O.; Reese, G. A virtually-induced overview effect? How seeing the world from above through a simulated space tour is related to awe, global identity and pro-environmental behaviour. J. Environ. Psychol. 2024, 99, 102428. [Google Scholar] [CrossRef]
- Nguyen, M.-H.; Duong, M.-P.T.; Tran, T.T.; Sari, N.P.W.P.; Tedjasuksmana, H.; La, V.-P.; Vuong, Q.-H. Beyond trust: How usefulness and immersiveness drive space tourism intentions in high-risk contexts. Curr. Issues Tour. 2025, 1–23. [Google Scholar] [CrossRef]
- Seo, I.T.; Liu, H.; Li, H.; Lee, J.-S. AI-infused video marketing: Exploring the influence of AI-generated tourism videos on tourist decision-making. Tour. Manag. 2025, 110, 105182. [Google Scholar] [CrossRef]
- Diwanji, V.S.; Geana, M.; Pei, J.; Nguyen, N.; Izhar, N.; Chaif, R.H. Consumers’ emotional responses to AI-Generated versus human-generated content: The role of perceived agency, affect and gaze in health marketing. Int. J. Hum.-Comput. Interact. 2025, 41, 12270–12290. [Google Scholar] [CrossRef]
- Oprea, S.-V.; Bâra, A. Is artificial intelligence a game-changer in steering e-business into the future? uncovering latent topics with probabilistic generative models. J. Theor. Appl. Electron. Commer. Res. 2025, 20, 16. [Google Scholar] [CrossRef]
- Slaney, C.; Lee, S.; Busser, J. Future space tourists’ motivations, constraints, and negotiation strategies: A grounded theory approach. J. Travel Res. 2025, 64, 1045–1063. [Google Scholar] [CrossRef]
- Guo, J.; Li, Y.; Xu, Y.; Zeng, K. How live streaming features impact consumers’ purchase intention in the context of cross-border E-commerce? A research based on SOR theory. Front. Psychol. 2021, 12, 767876. [Google Scholar] [CrossRef]
- Yang, Y.; Hu, J.; Nguyen, B. Awe, consumer conformity and social connectedness. Mark. Intell. Plan. 2021, 39, 893–908. [Google Scholar] [CrossRef]
- Wang, S.-F.; Chen, C.-C. Exploring designer trust in artificial intelligence-generated content: TAM/TPB model study. Appl. Sci. 2024, 14, 6902. [Google Scholar] [CrossRef]
- Peng, K.-L.; Kim, M.J.; Huang, Z.; Lai, I.K.W.; Ji, X. From holocene to anthropocene: A spacetime perspective on the ontology, epistemology, and methodology of space tourism. J. Hosp. Tour. Manag. 2025, 64, 101304. [Google Scholar] [CrossRef]
- Jiang, W.; Chen, H.-L. Can short videos work? The effects of use and gratification and social presence on purchase intention: Examining the mediating role of digital dependency. J. Theor. Appl. Electron. Commer. Res. 2024, 20, 5. [Google Scholar] [CrossRef]
- Yang, Y.; Zhao, Y.; Yeoh, W.; Qi, C.; Jiang, H. Exploring the Interaction Between Streaming Modes and Product Types in E-Commerce Sales. J. Theor. Appl. Electron. Commer. Res. 2025, 20, 53. [Google Scholar] [CrossRef]
- Zhou, C.; Li, H.; Zhang, L.; Ren, Y. Optimal recommendation strategies for AI-powered e-commerce platforms: A study of duopoly manufacturers and market competition. J. Theor. Appl. Electron. Commer. Res. 2023, 18, 1086–1106. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, Y.; Zhang, J. Risk Assessment of Live-Streaming Marketing Based on Hesitant Fuzzy Multi-Attribute Group Decision-Making Method. J. Theor. Appl. Electron. Commer. Res. 2025, 20, 120. [Google Scholar] [CrossRef]
- Manzoor, S.R.; Ullah, R.; Khattak, A.; Ullah, M.; Han, H. Exploring tourist perceptions of artificial intelligence devices in the hotel industry: Impact of industry 4.0. J. Travel Tour. Mark. 2024, 41, 272–291. [Google Scholar] [CrossRef]
- Zheng, D.; Ritchie, B.W.; Benckendorff, P.J.; Bao, J. The role of cognitive appraisal, emotion and commitment in affecting resident support toward tourism performing arts development. J. Sustain. Tour. 2019, 27, 1725–1744. [Google Scholar] [CrossRef]
- Fan, X.; Chai, Z.; Deng, N.; Dong, X. Adoption of augmented reality in online retailing and consumers’ product attitude: A cognitive perspective. J. Retail. Consum. Serv. 2020, 53, 101986. [Google Scholar] [CrossRef]
- Breitsohl, J.; Garrod, B. Assessing tourists’ cognitive, emotional and behavioural reactions to an unethical destination incident. Tour. Manag. 2016, 54, 209–220. [Google Scholar] [CrossRef]
- Hautz, J.; Füller, J.; Hutter, K.; Thürridl, C. Let users generate your video ads? The impact of video source and quality on consumers’ perceptions and intended behaviors. J. Interact. Mark. 2014, 28, 1–15. [Google Scholar] [CrossRef]
- Li, M.; Huang, L.; Tan, C.-H.; Wei, K.-K. Helpfulness of online product reviews as seen by consumers: Source and content features. Int. J. Electron. Commer. 2013, 17, 101–136. [Google Scholar] [CrossRef]
- Lim, S.; Schmälzle, R. The effect of source disclosure on evaluation of AI-generated messages. Comput. Hum. Behav. Artif. Hum. 2024, 2, 100058. [Google Scholar] [CrossRef]
- Lee, L.-H.; Lin, Z.; Hu, R.; Gong, Z.; Kumar, A.; Li, T.; Li, S.; Hui, P. When creators meet the metaverse: A survey on computational arts. arXiv 2021. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, C.; Zheng, S.; Qiao, Y.; Li, C.; Zhang, M.; Dam, S.K.; Thwal, C.M.; Tun, Y.L.; Huy, L.L. A complete survey on generative ai (aigc): Is chatgpt from gpt-4 to gpt-5 all you need? arXiv 2023. [Google Scholar] [CrossRef]
- Zhang, J.J.; Wang, Y.W.; Ruan, Q.; Yang, Y. Digital tourism interpretation content quality: A comparison between AI-generated content and professional-generated content. Tour. Manag. Perspect. 2024, 53, 101279. [Google Scholar] [CrossRef]
- Wang, C.; Lu, C. The effect of awe in wildlife tourists on animal-friendly behavioural intentions: A serial mediation model of connectedness to nature and empathy. Asia Pac. J. Tour. Res. 2025, 30, 161–175. [Google Scholar] [CrossRef]
- Huang, G.I.; Xie, H.; Du, J.; Zhang, C. When and How to Encourage Tourists to Be More Responsible: Essential Issues for Natural World Heritage Site Post-Disaster Restorations. J. Travel Res. 2025, 00472875251337719. [Google Scholar] [CrossRef]
- Keltner, D.; Haidt, J. Approaching awe, a moral, spiritual, and aesthetic emotion. Cogn. Emot. 2003, 17, 297–314. [Google Scholar] [CrossRef]
- Shiota, M.N.; Thrash, T.; Danvers, A.F.; Dombrowski, J.T. Transcending the Self: Awe, Elevation, and Inspiration; Guilford Press: New York, NY, USA, 2017. [Google Scholar] [CrossRef]
- Bhattacherjee, A.; Sanford, C. Influence processes for information technology acceptance: An elaboration likelihood model. MIS Q. 2006, 30, 805–825. [Google Scholar] [CrossRef]
- Erkan, I.; Evans, C. The influence of eWOM in social media on consumers’ purchase intentions: An extended approach to information adoption. Comput. Hum. Behav. 2016, 61, 47–55. [Google Scholar] [CrossRef]
- Errichiello, L.; Micera, R.; Atzeni, M.; Del Chiappa, G. Exploring the implications of wearable virtual reality technology for museum visitors’ experience: A cluster analysis. Int. J. Tour. Res. 2019, 21, 590–605. [Google Scholar] [CrossRef]
- De Keyser, A.; Lariviere, B. How technical and functional service quality drive consumer happiness: Moderating influences of channel usage. J. Serv. Manag. 2014, 25, 30–48. [Google Scholar] [CrossRef]
- Lee, H.; Shin, M.; Yang, J.; Chock, T.M. Virtual influencers vs. human influencers in the context of influencer marketing: The moderating role of machine heuristic on perceived authenticity of influencers. Int. J. Hum.-Comput. Interact. 2025, 41, 6029–6046. [Google Scholar] [CrossRef]
- Portal, S.; Abratt, R.; Bendixen, M. The role of brand authenticity in developing brand trust. J. Strateg. Mark. 2019, 27, 714–729. [Google Scholar] [CrossRef]
- Zhang, T.; Tao, D.; Qu, X.; Zhang, X.; Lin, R.; Zhang, W. The roles of initial trust and perceived risk in public’s acceptance of automated vehicles. Transp. Res. Part C Emerg. Technol. 2019, 98, 207–220. [Google Scholar] [CrossRef]
- Ha, T.; Kim, S.; Seo, D.; Lee, S. Effects of explanation types and perceived risk on trust in autonomous vehicles. Transp. Res. Part F Traffic Psychol. Behav. 2020, 73, 271–280. [Google Scholar] [CrossRef]
- Wang, L.; Lyu, J. Inspiring awe through tourism and its consequence. Ann. Tour. Res. 2019, 77, 106–116. [Google Scholar] [CrossRef]
- Boateng, H.; Okoe, A.F.; Hinson, R.E. Dark tourism: Exploring tourist’s experience at the Cape Coast Castle, Ghana. Tour. Manag. Perspect. 2018, 27, 104–110. [Google Scholar] [CrossRef]
- Coghlan, A.; Buckley, R.; Weaver, D. A framework for analysing awe in tourism experiences. Ann. Tour. Res. 2012, 39, 1710–1714. [Google Scholar] [CrossRef]
- Vo, D.-T.; Nguyen, L.V.T.; Dang-Pham, D.; Hoang, A.-P. What makes an app authentic? Determining antecedents of perceived authenticity in an AI-powered service app. Comput. Hum. Behav. 2025, 163, 108495. [Google Scholar] [CrossRef]
- Jang, S.S.; Ha, J.; Park, K. Effects of ethnic authenticity: Investigating Korean restaurant customers in the US. Int. J. Hosp. Manag. 2012, 31, 990–1003. [Google Scholar] [CrossRef]
- Kim, H.; Bonn, M.A. Authenticity: Do tourist perceptions of winery experiences affect behavioral intentions? Int. J. Contemp. Hosp. Manag. 2016, 28, 839–859. [Google Scholar] [CrossRef]
- Stone, R.N.; Grønhaug, K. Perceived risk: Further considerations for the marketing discipline. Eur. J. Mark. 1993, 27, 39–50. [Google Scholar] [CrossRef]
- Choi, J.K.; Ji, Y.G. Investigating the importance of trust on adopting an autonomous vehicle. Int. J. Hum.-Comput. Interact. 2015, 31, 692–702. [Google Scholar] [CrossRef]
- Petty, R.E.; Cacioppo, J.T. Addressing disturbing and disturbed consumer behavior: Is it necessary to change the way we conduct behavioral science? J. Mark. Res. 1996, 33, 1–8. [Google Scholar] [CrossRef]
- Slade, E.L.; Dwivedi, Y.K.; Piercy, N.C.; Williams, M.D. Modeling consumers’ adoption intentions of remote mobile payments in the United Kingdom: Extending UTAUT with innovativeness, risk, and trust. Psychol. Mark. 2015, 32, 860–873. [Google Scholar] [CrossRef]
- Qiu, H.; Ye, B.H.; Bai, B.; Wang, W.H. Do the roles of switching barriers on customer loyalty vary for different types of hotels? Int. J. Hosp. Manag. 2015, 46, 89–98. [Google Scholar] [CrossRef]
- Djafarova, E.; Rushworth, C. Exploring the credibility of online celebrities’ Instagram profiles in influencing the purchase decisions of young female users. Comput. Hum. Behav. 2017, 68, 1–7. [Google Scholar] [CrossRef]
- Schouten, A.P.; Janssen, L.; Verspaget, M. Celebrity vs. Influencer endorsements in advertising: The role of identification, credibility, and Product-Endorser fit. In Leveraged Marketing Communications; Routledge: Abingdon, UK, 2021; pp. 208–231. [Google Scholar]
- Liu, X.; Zhang, L.; Chen, Q. The effects of tourism e-commerce live streaming features on consumer purchase intention: The mediating roles of flow experience and trust. Front. Psychol. 2022, 13, 995129. [Google Scholar] [CrossRef] [PubMed]
- Petzel, Z.W.; Sowerby, L. Prejudiced interactions with large language models (LLMs) reduce trustworthiness and behavioral intentions among members of stigmatized groups. Comput. Hum. Behav. 2025, 165, 108563. [Google Scholar] [CrossRef]
- Fan, D.X.; Buhalis, D.; Fragkaki, E.; Tsai, Y.-R. Achieving senior tourists’ active aging through value co–creation: A customer-dominant logic perspective. J. Travel Res. 2025, 64, 427–443. [Google Scholar] [CrossRef]
- Seo, M.; Yang, S.; Laurent, S.M. No one is an island: Awe encourages global citizenship identification. Emotion 2023, 23, 601. [Google Scholar] [CrossRef]
- Reese, G. Common human identity and the path to global climate justice. Clim. Change 2016, 134, 521–531. [Google Scholar] [CrossRef]
- Huang, Z.; Peng, K.-L.; Wang, Y.; Qiu, H. Beyond Earth: Comparing Rational and Behavioral Mediators in Space Tourism Intentions. J. Qual. Assur. Hosp. Tour. 2025, 1–29. [Google Scholar] [CrossRef]
- Wanner, J.; Herm, L.-V.; Heinrich, K.; Janiesch, C. The effect of transparency and trust on intelligent system acceptance: Evidence from a user-based study. Electron. Mark. 2022, 32, 2079–2102. [Google Scholar] [CrossRef]
- Jiménez-Barreto, J.; Rubio, N.; Campo, S. Destination brand authenticity: What an experiential simulacrum! A multigroup analysis of its antecedents and outcomes through official online platforms. Tour. Manag. 2020, 77, 104022. [Google Scholar] [CrossRef]
- Bui, H.T.; Filimonau, V.; Sezerel, H. AI-thenticity: Exploring the effect of perceived authenticity of AI-generated visual content on tourist patronage intentions. J. Destin. Mark. Manag. 2024, 34, 100956. [Google Scholar] [CrossRef]
- Wu, X.; Yang, Z.; Law, R.; Gong, R.; Xu, H. Beyond human drivers: Understanding female tourists’ acceptance of autonomous vehicles in tourism. J. Travel Tour. Mark. 2025, 42, 307–320. [Google Scholar] [CrossRef]
- Su, L.; Li, M.; Wen, J.; He, X. How do tourism activities and induced awe affect tourists’ pro-environmental behavior? Tour. Manag. 2025, 106, 105002. [Google Scholar] [CrossRef]
- Bonner, E.T.; Friedman, H.L. A conceptual clarification of the experience of awe: An interpretative phenomenological analysis. Humanist. Psychol. 2011, 39, 222–235. [Google Scholar] [CrossRef]
- Pearce, J.; Strickland-Munro, J.; Moore, S.A. What fosters awe-inspiring experiences in nature-based tourism destinations? J. Sustain. Tour. 2017, 25, 362–378. [Google Scholar] [CrossRef]
- Ma, D.; Dong, J.; Lee, C.-C. Influence of perceived risk on consumers’ intention and behavior in cross-border e-commerce transactions: A case study of the Tmall Global platform. Int. J. Inf. Manag. 2025, 81, 102854. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Y.; Chang, L. How do short videos influence users’ tourism intention? A study of key factors. Front. Psychol. 2023, 13, 1036570. [Google Scholar] [CrossRef]
- Wu, X.; Lai, I.K.W. The distinctiveness of short travel videos makes audiences proud to forward them. J. Hosp. Tour. Manag. 2025, 63, 211–219. [Google Scholar] [CrossRef]
- Qu, B.; Liang, X.; Sun, S.; Gao, W. Exploring aigc video quality: A focus on visual harmony video-text consistency and domain distribution gap. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 16–22 June 2024; pp. 6652–6660. [Google Scholar] [CrossRef]
- Wu, S.-L.; Hsu, C.-P. Role of authenticity in massively multiplayer online role playing games (MMORPGs): Determinants of virtual item purchase intention. J. Bus. Res. 2018, 92, 242–249. [Google Scholar] [CrossRef]
- Ayeh, J.K.; Au, N.; Law, R. “Do we believe in TripAdvisor?” Examining credibility perceptions and online travelers’ attitude toward using user-generated content. J. Travel Res. 2013, 52, 437–452. [Google Scholar] [CrossRef]
- Dawar, S.; Panwar, S.; Dhaka, S.; Kudal, P. Antecedents and role of trust in chatbot use intentions: An Indian perspective. Mark. Menedžment Innovacij 2022, 13, 198–206. [Google Scholar] [CrossRef]
- Brislin, R.W. Back-translation for cross-cultural research. J. Cross-Cult. Psychol. 1970, 1, 185–216. [Google Scholar] [CrossRef]
- Hair, J.F., Jr.; Hult, G.T.M.; Ringle, C.M.; Sarstedt, M.; Danks, N.P.; Ray, S. Partial Least Squares Structural Equation Modeling (PLS-SEM) Using R: A Workbook; Springer Nature: Berlin, Germany, 2021. [Google Scholar] [CrossRef]
- Podsakoff, P.M.; MacKenzie, S.B.; Lee, J.-Y.; Podsakoff, N.P. Common method biases in behavioral research: A critical review of the literature and recommended remedies. J. Appl. Psychol. 2003, 88, 879. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Routledge: Abingdon, UK, 2013. [Google Scholar] [CrossRef]
- Henseler, J.; Ringle, C.M.; Sarstedt, M. A new criterion for assessing discriminant validity in variance-based structural equation modeling. J. Acad. Mark. Sci. 2015, 43, 115–135. [Google Scholar] [CrossRef]
- Hair, J.F. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM); Sage: Newcastle upon Tyne, UK, 2014. [Google Scholar]
- Quesnel, D.; Riecke, B.E. Are you awed yet? How virtual reality gives us awe and goose bumps. Front. Psychol. 2018, 9, 2158. [Google Scholar] [CrossRef]
- Chirico, A.; Cipresso, P.; Yaden, D.B.; Biassoni, F.; Riva, G.; Gaggioli, A. Effectiveness of immersive videos in inducing awe: An experimental study. Sci. Rep. 2017, 7, 1218. [Google Scholar] [CrossRef]
- Wu, L.; Chiu, M.-L.; Chen, K.-W. Defining the determinants of online impulse buying through a shopping process of integrating perceived risk, expectation-confirmation model, and flow theory issues. Int. J. Inf. Manag. 2020, 52, 102099. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, J.; Liu, R.; Jiang, Y. Enhancing recommendation acceptance: Resolving the personalization–privacy paradox in recommender systems: A privacy calculus perspective. Int. J. Inf. Manag. 2024, 76, 102755. [Google Scholar] [CrossRef]


| Demographic | Categories | Frequency | Percent (%) |
|---|---|---|---|
| Gender | Male | 182 | 52.6 |
| Female | 164 | 47.4 | |
| Age | 18–29 | 118 | 34.1 |
| 30–39 | 135 | 39.0 | |
| 40–49 | 62 | 17.9 | |
| 50–59 | 25 | 7.2 | |
| ≥60 | 6 | 1.7 | |
| Education level | High school or below | 28 | 8.1 |
| Bachelor’s degree | 145 | 41.9 | |
| Master’s degree | 136 | 39.3 | |
| Doctoral degree | 37 | 10.7 | |
| Annual income (RMB) | ≤200,000 | 19 | 5.5 |
| 200,001–400,000 | 74 | 21.4 | |
| 400,001–800,000 | 121 | 35.0 | |
| 800,001–1,500,000 | 97 | 28.0 | |
| ≥1,500,000 | 35 | 10.1 |
| Construct | Cronbach’s Alpha | CR | AVE | Fornell–Larcker Criterion/HTMT | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
| CQ | TQ | PA | PR | TR | AW | BI | ||||
| CQ | 0.897 | 0.898 | 0.707 | 0.841 | 0.430 | 0.417 | 0.380 | 0.365 | 0.407 | 0.459 |
| TQ | 0.841 | 0.849 | 0.676 | 0.372 | 0.822 | 0.381 | 0.472 | 0.373 | 0.418 | 0.481 |
| PA | 0.886 | 0.891 | 0.686 | 0.374 | 0.335 | 0.828 | 0.411 | 0.356 | 0.397 | 0.439 |
| PR | 0.897 | 0.899 | 0.708 | −0.340 | −0.414 | −0.369 | 0.841 | 0.379 | 0.476 | 0.474 |
| TR | 0.875 | 0.878 | 0.667 | 0.325 | 0.326 | 0.316 | −0.338 | 0.816 | 0.364 | 0.439 |
| AW | 0.857 | 0.860 | 0.700 | 0.357 | 0.360 | 0.349 | −0.420 | 0.317 | 0.837 | 0.476 |
| BI | 0.825 | 0.828 | 0.741 | 0.396 | 0.405 | 0.378 | −0.410 | 0.377 | 0.403 | 0.861 |
| Construct/Items | Mean | S.D. | Factor Loadings | VIF |
|---|---|---|---|---|
| Content quality (CQ) | ||||
| CQ 1 | 4.376 | 1.687 | 0.846 | 2.295 |
| CQ 2 | 4.517 | 1.615 | 0.822 | 2.009 |
| CQ 3 | 4.538 | 1.609 | 0.853 | 2.412 |
| CQ 4 | 4.454 | 1.605 | 0.832 | 2.270 |
| CQ 5 | 4.408 | 1.650 | 0.851 | 2.355 |
| Technical quality (TQ) | ||||
| TQ 1 | 4.572 | 1.518 | 0.817 | 1.901 |
| TQ 2 | 4.598 | 1.446 | 0.797 | 1.781 |
| TQ 3 | 4.668 | 1.531 | 0.855 | 1.981 |
| TQ 4 | 4.639 | 1.476 | 0.820 | 1.755 |
| Perceived authenticity (PA) | ||||
| PA 1 | 4.379 | 1.636 | 0.823 | 2.085 |
| PA 2 | 4.428 | 1.592 | 0.785 | 1.917 |
| PA 3 | 4.353 | 1.579 | 0.843 | 2.203 |
| PA 4 | 4.428 | 1.612 | 0.845 | 2.273 |
| PA 5 | 4.506 | 1.615 | 0.843 | 2.158 |
| Perceived risk (PR) | ||||
| PR 1 | 3.633 | 1.636 | 0.836 | 2.307 |
| PR 2 | 3.592 | 1.653 | 0.846 | 2.398 |
| PR 3 | 3.647 | 1.649 | 0.844 | 2.27 |
| PR 4 | 3.624 | 1.642 | 0.827 | 2.124 |
| PR 5 | 3.705 | 1.611 | 0.853 | 2.334 |
| Trustworthiness (TR) | ||||
| TR 1 | 4.269 | 1.616 | 0.818 | 2.024 |
| TR 2 | 4.350 | 1.624 | 0.810 | 2.034 |
| TR 3 | 4.350 | 1.550 | 0.805 | 1.879 |
| TR 4 | 4.260 | 1.551 | 0.840 | 2.149 |
| TR 5 | 4.462 | 1.582 | 0.809 | 1.960 |
| Awe (AW) | ||||
| AW 1 | 4.257 | 1.600 | 0.820 | 1.886 |
| AW 2 | 4.361 | 1.629 | 0.840 | 2.037 |
| AW 3 | 4.396 | 1.596 | 0.834 | 1.938 |
| AW 4 | 4.315 | 1.668 | 0.853 | 2.027 |
| Behavioral intention (BI) | ||||
| BI 1 | 4.214 | 1.600 | 0.880 | 2.001 |
| BI 2 | 4.382 | 1.634 | 0.840 | 1.792 |
| BI 3 | 4.202 | 1.618 | 0.861 | 1.845 |
| Hypothesis | Path | β | p-Value | CI | Results | |
|---|---|---|---|---|---|---|
| LL | UL | |||||
| H1 | CQ → TR | 0.159 | 0.006 | 0.043 | 0.269 | Supported |
| H2 | TQ → TR | 0.148 | 0.010 | 0.033 | 0.264 | Supported |
| H3 | CQ → AW | 0.163 | 0.002 | 0.062 | 0.267 | Supported |
| H4 | TQ → AW | 0.147 | 0.005 | 0.042 | 0.250 | Supported |
| H5 | CQ → BI | 0.145 | 0.005 | 0.042 | 0.248 | Supported |
| H6 | TQ → BI | 0.150 | 0.006 | 0.044 | 0.256 | Supported |
| H7 | PA → TR | 0.145 | 0.011 | 0.032 | 0.259 | Supported |
| H8 | PR → TR | −0.170 | 0.002 | −0.280 | −0.061 | Supported |
| H9 | PA → AW | 0.148 | 0.005 | 0.045 | 0.249 | Supported |
| H10 | PR → AW | −0.249 | 0.000 | −0.355 | −0.144 | Supported |
| H11 | PA → BI | 0.123 | 0.023 | 0.015 | 0.227 | Supported |
| H12 | PR → BI | −0.141 | 0.007 | −0.243 | −0.038 | Supported |
| H13 | TR → BI | 0.148 | 0.004 | 0.043 | 0.244 | Supported |
| H14 | AW → BI | 0.148 | 0.003 | 0.052 | 0.245 | Supported |
| H15a | CQ → TR → BI | 0.023 | 0.059 | 0.005 | 0.053 | Not Supported |
| H15b | TQ → TR → BI | 0.022 | 0.070 | 0.004 | 0.053 | Not Supported |
| H16a | CQ → AW → BI | 0.024 | 0.030 | 0.007 | 0.053 | Supported |
| H16b | TQ → AW → BI | 0.022 | 0.046 | 0.005 | 0.049 | Supported |
| H17a | PA → TR → BI | 0.021 | 0.054 | 0.004 | 0.049 | Not Supported |
| H17b | PR → TR → BI | −0.025 | 0.039 | −0.056 | −0.007 | Supported |
| H18a | PA → AW → BI | 0.022 | 0.055 | 0.005 | 0.050 | Not Supported |
| H18b | PR → AW → BI | −0.037 | 0.015 | −0.073 | −0.013 | Supported |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Peng, K.-L.; Huang, Z.; Ma, L. AI-Generated Videos: Influencing Trustworthiness, Awe, and Behavioral Intention in Space Tourism E-Commerce. J. Theor. Appl. Electron. Commer. Res. 2025, 20, 307. https://doi.org/10.3390/jtaer20040307
Wang S, Peng K-L, Huang Z, Ma L. AI-Generated Videos: Influencing Trustworthiness, Awe, and Behavioral Intention in Space Tourism E-Commerce. Journal of Theoretical and Applied Electronic Commerce Research. 2025; 20(4):307. https://doi.org/10.3390/jtaer20040307
Chicago/Turabian StyleWang, Shanshan, Kang-Lin Peng, Zhilun Huang, and Linjie Ma. 2025. "AI-Generated Videos: Influencing Trustworthiness, Awe, and Behavioral Intention in Space Tourism E-Commerce" Journal of Theoretical and Applied Electronic Commerce Research 20, no. 4: 307. https://doi.org/10.3390/jtaer20040307
APA StyleWang, S., Peng, K.-L., Huang, Z., & Ma, L. (2025). AI-Generated Videos: Influencing Trustworthiness, Awe, and Behavioral Intention in Space Tourism E-Commerce. Journal of Theoretical and Applied Electronic Commerce Research, 20(4), 307. https://doi.org/10.3390/jtaer20040307

