From Perception to Purchase: How AI Literacy Shapes Consumer Decisions in AI-Generated Sponsored Vlogs Across Products and Services
Abstract
1. Introduction
Research Objectives and Questions
2. Literature Review, Research Hypotheses, and Conceptual Model
2.1. AISVs
2.2. AI Literacy
2.3. Theory and Models
2.4. Hypothesis Development
2.4.1. Emotional Pathway of AI Literacy: Shaping Emotional Value and Its Subsequent Effects
2.4.2. Cognitive Pathway of AI Literacy: Assessment of Information Usefulness and Its Effects
2.4.3. Trust Pathway of AI Literacy: Evaluating Source Credibility and Its Consequences
3. Methodology
Research Instruments, Measures, and Variable Measurement
4. Results
5. Discussion
5.1. How AI Literacy Shapes Consumer Perception and Information Adoption from AISVs (RQ1)
5.2. Direct and Indirect Effects of AI Literacy on Purchase Intention (RQ2)
5.3. Relationship Patterns Under AISV Types (Products and Services) Differences (RQ3)
6. Theoretical Implications
7. Practical Implications
7.1. Implications for Brand Managers
7.2. Implications for Content Creators
7.3. Implications for Retailers
7.4. Implications for Consumers
8. Limitations and Future Research Directions
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AI | Artificial Intelligence | 
| AIGA | Artificial Intelligence-Generated Advertising | 
| AIGC | Artificial Intelligence-Generated Content | 
| AISV | Artificial Intelligence-Generated Sponsored Vlogs | 
| AILPDM | AI Literacy Perception–Decision Model | 
| ELM | Elaboration Likelihood Model | 
| VAM | Value-Based Adoption Model | 
Appendix A. Discriminant Validity and Correlations
| Constructs | AIL | EM | IU | SC | IA | PI | Age | Gender | Frequency | AVE | 
|---|---|---|---|---|---|---|---|---|---|---|
| AIL | 0.800 | 0.640 | ||||||||
| EM | 0.562 | 0.879 | 0.773 | |||||||
| IU | 0.640 | 0.425 | 0.855 | 0.731 | ||||||
| SC | 0.550 | 0.389 | 0.512 | 0.861 | 0.742 | |||||
| IA | 0.467 | 0.523 | 0.621 | 0.478 | 0.833 | 0.694 | ||||
| PI | 0.423 | 0.387 | 0.445 | 0.378 | 0.654 | 0.858 | 0.736 | |||
| Age | –0.28 | 0.12 | –0.31 | 0.08 | –0.19 | –0.15 | na | na | na | na | 
| Gender | –0.21 | 0.26 | –0.17 | 0.14 | 0.09 | 0.18 | –0.11 | na | na | na | 
| Frequency | 0.16 | 0.20 | 0.18 | 0.14 | 0.22 | 0.17 | –0.23 | 0.13 | na | na | 
| Constructs | AIL | EM | IU | SC | IA | PI | Age | Gender | Frequency | AVE | 
|---|---|---|---|---|---|---|---|---|---|---|
| AIL | 0.795 | 0.632 | ||||||||
| EM | 0.538 | 0.875 | 0.765 | |||||||
| IU | 0.612 | 0.411 | 0.850 | 0.723 | ||||||
| SC | 0.527 | 0.376 | 0.492 | 0.857 | 0.734 | |||||
| IA | 0.441 | 0.506 | 0.596 | 0.451 | 0.828 | 0.686 | ||||
| PI | 0.401 | 0.365 | 0.431 | 0.355 | 0.625 | 0.853 | 0.728 | |||
| Age | –0.26 | 0.11 | –0.29 | 0.07 | –0.17 | –0.13 | na | na | na | na | 
| Gender | –0.18 | 0.24 | –0.15 | 0.13 | 0.08 | 0.16 | –0.09 | na | na | na | 
| Frequency | 0.14 | 0.19 | 0.16 | 0.13 | 0.21 | 0.15 | –0.21 | 0.11 | na | na | 
Appendix B. Mediation Effect Test
| Indirect Path | Method | Type | Indirect Effect | z | p-Value | SE | Result | 
|---|---|---|---|---|---|---|---|
| AIL → EM → IA | Delta | T | 0.122 | 3.29 | 0.001 | 0.037 | Supported | 
| E | 0.121 | 3.29 | 0.001 | 0.037 | Supported | ||
| Sobel | T | 0.122 | 3.29 | 0.001 | 0.037 | Supported | |
| E | 0.121 | 3.09 | 0.002 | 0.039 | Supported | ||
| Monte Carlo | T | 0.122 | 3.29 | 0.001 | 0.037 | Supported | |
| E | 0.121 | 2.97 | 0.003 | 0.041 | Supported | ||
| AIL → IU → IA | Delta | T | 0.190 | 3.96 | 0.000 | 0.048 | Supported | 
| E | 0.193 | 3.94 | 0.000 | 0.049 | Supported | ||
| Sobel | T | 0.190 | 3.95 | 0.000 | 0.048 | Supported | |
| E | 0.193 | 3.92 | 0.000 | 0.049 | Supported | ||
| Monte Carlo | T | 0.190 | 3.89 | 0.000 | 0.049 | Supported | |
| E | 0.193 | 3.87 | 0.000 | 0.050 | Supported | ||
| AIL → SC → IA | Delta | T | 0.094 | 1.77 | 0.077 | 0.053 | Not Supported | 
| E | 0.088 | 1.78 | 0.074 | 0.049 | Not Supported | ||
| Sobel | T | 0.094 | 1.73 | 0.084 | 0.054 | Not Supported | |
| E | 0.088 | 1.75 | 0.079 | 0.050 | Not Supported | ||
| Monte Carlo | T | 0.094 | 1.74 | 0.082 | 0.054 | Not Supported | |
| E | 0.088 | 1.77 | 0.075 | 0.050 | Not Supported | ||
| AIL → IA → PI | Delta | T | 0.096 | 1.42 | 0.154 | 0.068 | Not Supported | 
| E | 0.080 | 1.44 | 0.150 | 0.056 | Not Supported | ||
| Sobel | T | 0.096 | 1.33 | 0.183 | 0.072 | Not Supported | |
| E | 0.080 | 1.35 | 0.176 | 0.059 | Not Supported | ||
| Monte Carlo | T | 0.096 | 1.34 | 0.181 | 0.072 | Not Supported | |
| E | 0.080 | 1.36 | 0.175 | 0.059 | Not Supported | ||
| EM → IA → PI | Delta | T | 0.145 | 3.09 | 0.002 | 0.047 | Supported | 
| E | 0.124 | 2.81 | 0.005 | 0.044 | Supported | ||
| Sobel | T | 0.145 | 2.97 | 0.003 | 0.049 | Supported | |
| E | 0.124 | 2.75 | 0.006 | 0.045 | Supported | ||
| Monte Carlo | T | 0.145 | 2.97 | 0.003 | 0.049 | Supported | |
| E | 0.124 | 2.70 | 0.007 | 0.046 | Supported | 
Appendix C. Control Variables Effects in Structural Model
| Control Variables | Dependent Variables | β | SE | t-Value | p-Value | 95% CI | 
|---|---|---|---|---|---|---|
| Age | AIL | −0.185 | 0.073 | −2.534 | 0.012 | [−0.328, −0.042] | 
| IA | −0.142 | 0.064 | −2.219 | 0.028 | [−0.268, −0.016] | |
| PI | −0.098 | 0.055 | −1.782 | 0.076 | [−0.206, 0.010] | |
| Gender | AIL | −0.118 | 0.067 | −1.761 | 0.079 | [−0.249, 0.013] | 
| IA | 0.089 | 0.061 | 1.459 | 0.145 | [−0.031, 0.209] | |
| PI | 0.156 | 0.066 | 2.364 | 0.018 | [0.026, 0.286] | |
| Frequency | AIL | 0.234 | 0.078 | 3.000 | 0.003 | [0.081, 0.387] | 
| IA | 0.167 | 0.072 | 2.319 | 0.021 | [0.026, 0.308] | |
| PI | 0.112 | 0.066 | 1.697 | 0.089 | [−0.017, 0.241] | 
| Control Variables | Dependent Variables  | β | SE | t-Value | p-Value | 95% CI | 
|---|---|---|---|---|---|---|
| Age | AIL | −0.172 | 0.071 | −2.424 | 0.016 | [−0.311, −0.033] | 
| IA | −0.128 | 0.062 | −2.064 | 0.039 | [−0.249, −0.007] | |
| PI | −0.087 | 0.053 | −1.642 | 0.101 | [−0.191, 0.017] | |
| Gender | AIL | −0.105 | 0.065 | −1.615 | 0.107 | [−0.231, 0.021] | 
| IA | 0.076 | 0.060 | 1.267 | 0.206 | [−0.042, 0.194] | |
| PI | 0.142 | 0.064 | 2.219 | 0.027 | [0.016, 0.268] | |
| Frequency | AIL | 0.246 | 0.076 | 3.237 | 0.001 | [0.098, 0.394] | 
| IA | 0.181 | 0.070 | 2.579 | 0.010 | [0.044, 0.318] | |
| PI | 0.127 | 0.064 | 1.986 | 0.048 | [0.001, 0.253] | 
References
- Kumar, V.; Ashraf, A.R.; Nadeem, W. AI-Powered Marketing: What, Where, and How? Int. J. Inf. Manag. 2024, 77, 102783. [Google Scholar] [CrossRef]
 - O’Callaghan, J. How OpenAI’s Text-to-Video Tool Sora Could Change Science—And Society. Nature 2024, 627, 475–476. [Google Scholar] [CrossRef]
 - Chen, S.; Ge, C.; Zhang, Y.; Zhang, Y.; Zhu, F.; Yang, H.; Hao, H.; Wu, H.; Lai, Z.; Hu, Y.; et al. Goku: Flow Based Video Generative Foundation Models. 2025. Available online: https://saiyan-world.github.io/goku/ (accessed on 30 September 2025).
 - Pichai, S. Google I/O 2025: From Research to Reality. 2025. Available online: https://blog.google/technology/ai/io-2025-keynote/#google-beam (accessed on 30 September 2025).
 - Filieri, R.; Acikgoz, F.; Du, H. Electronic Word-of-Mouth from Video Bloggers: The Role of Content Quality and Source Homophily across Hedonic and Utilitarian Products. J. Bus. Res. 2023, 160, 113774. [Google Scholar] [CrossRef]
 - Zhuang, S.; Huang, Z.; Zhang, Y.; Wang, F.; Fu, C.; Yang, B.; Sun, C.; Li, C.; Wang, Y. Video-GPT via Next Clip Diffusion. arXiv 2025, arXiv:2505.12489. [Google Scholar] [CrossRef]
 - Kumar, L.; Singh, D.K. A Novel Aspect of Automatic Vlog Content Creation Using Generative Modeling Approaches. Digit. Signal Process. 2024, 148, 104462. [Google Scholar] [CrossRef]
 - Hou, M. Social Media Celebrity and the Institutionalization of YouTube. Converg. Int. J. Res. Into New Media Technol. 2018, 25, 534–553. [Google Scholar] [CrossRef]
 - Chan, J.; Kok-Shun, B.V. An AI-Powered Solution for Detecting and Categorising Sponsored Ad Segments in YouTube Videos. Softw. Impacts 2025, 24, 100759. [Google Scholar] [CrossRef]
 - Ratta, A.A.; Muneer, S.; ul Hassan, H. The Impact of AI Generated Advertising Content on Consumer Buying Intention and Consumer Engagement. Bull. Bus. Econ. 2024, 13, 1152–1157. [Google Scholar] [CrossRef]
 - Bartelt, C.; Röser, A.M. Transforming the Operational Components of Marketing Processes with GenAI: A Paradigm Shift. Adv. Artif. Intell. Mach. Learn. 2024, 4, 2535–2544. [Google Scholar] [CrossRef]
 - Ching, D.; Twomey, J.; Aylett, M.P.; Quayle, M.; Linehan, C.; Murphy, G. Can Deepfakes Manipulate Us? Assessing the Evidence via a Critical Scoping Review. PLoS ONE 2025, 20, e0320124. [Google Scholar] [CrossRef]
 - Moon, W.-K.; Kahlor, L.A. Fact-Checking in the Age of AI: Reducing Biases with Non-Human Information Sources. Technol. Soc. 2025, 80, 102760. [Google Scholar] [CrossRef]
 - Berglund, C.; Allerborg, H. How Do Different Factors Influence Customer Satisfaction in the Context of AI Marketing? A YouTube-Ads Study. Ph.D. Thesis, Uppsala University, Uppsala, Sweden, 2024. [Google Scholar]
 - TikTok E-Commerce. SocialBeta 2025 Youth Emotional Consumption Trend Report. TikTok E-Commerce Marketing Observatory 2025. Available online: https://mp.weixin.qq.com/s/vsxTsTMsKUeoE56MuI7kvA (accessed on 8 August 2025).
 - Kamila, M.K.; Jasrotia, S.S. Ethical Issues in the Development of Artificial Intelligence: Recognizing the Risks. Int. J. Ethics Syst. 2025, 41, 45–63. [Google Scholar] [CrossRef]
 - Argan, M.; Dinc, H.; Kaya, S.; Argan, M.T. Artificial Intelligence (AI) in Advertising Understanding and Schematizing the Behaviors of Social Media Users. Adv. Distrib. Comput. Artif. Intell. J. 2023, 11, 331–348. [Google Scholar] [CrossRef]
 - Lim, W.M.; Gupta, S.; Aggarwal, A.; Paul, J.; Sadhna, P. How Do Digital Natives Perceive and React toward Online Advertising? Implications for SMEs. J. Strateg. Mark. 2024, 32, 1071–1105. [Google Scholar] [CrossRef]
 - Tully, S.M.; Longoni, C.; Appel, G. Lower Artificial Intelligence Literacy Predicts Greater AI Receptivity. J. Mark. 2025, 89, 1–20. [Google Scholar] [CrossRef]
 - Long, D.; Magerko, B. What Is AI Literacy? Competencies and Design Considerations. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, Honolulu, HI, USA, 25–30 April 2020; Association for Computing Machinery: New York, NY, USA, 2020; pp. 1–16. [Google Scholar]
 - Wang, C.; Boerman, S.C.; Kroon, A.C.; Möller, J.; de Vreese, C.H. The Artificial Intelligence Divide: Who Is the Most Vulnerable? New Media Soc. 2024, 27, 3867–3889. [Google Scholar] [CrossRef]
 - Spence, M.A. Market Signaling: Information Transfer in Hiring and Related Processes; Harvard University Press: Cambridge, MA, USA, 1974; pp. 1–10. [Google Scholar]
 - Almatrafi, O.; Johri, A.; Lee, H. A Systematic Review of AI Literacy Conceptualization, Constructs, and Implementation and Assessment Efforts (2019–2023). Comput. Educ. Open 2024, 6, 100173. [Google Scholar] [CrossRef]
 - Popa, D.M. Critical Exploratory Investigation of AI Consumption, AI Perception and AI Literacy Requirements. SSRN Electron. J. 2025, 1–28. [Google Scholar] [CrossRef]
 - Coffin, J. Asking Questions of AI Advertising: A Maieutic Approach. J. Advert. 2022, 51, 608–623. [Google Scholar] [CrossRef]
 - Cicek, M.; Gursoy, D.; Lu, L. Adverse Impacts of Revealing the Presence of “Artificial Intelligence (AI)” Technology in Product and Service Descriptions on Purchase Intentions: The Mediating Role of Emotional Trust and the Moderating Role of Perceived Risk. J. Hosp. Mark. Manag. 2025, 34, 1–23. [Google Scholar] [CrossRef]
 - Chen, Y.; Wang, H.; Hill, S.R.; Li, B. Consumer Attitudes toward AI-Generated Ads: Appeal Types, Self-Efficacy and AI’s Social Role. J. Bus. Res. 2024, 185, 114867. [Google Scholar] [CrossRef]
 - Greiner, D.; Lemoine, J.-F. Bridging the Gap: User Expectations for Conversational AI Services with Consideration of User Expertise. J. Serv. Mark. 2025, 39, 76–94. [Google Scholar] [CrossRef]
 - Qadri, U.A.; Moustafa, A.M.A.; Ghani, M.A. They Misused Me! Digital Literacy’s Dual Role in AI Marketing Manipulation and Unethical Young Consumer Behavior. Young Consum. 2025, 26, 1–23. [Google Scholar] [CrossRef]
 - Yang, J.; Chu, S.-C.; Cao, Y. Adopting AI Advertising Creative Technology in China: A Mixed Method Study Through the Technology-Organization-Environment (TOE) Framework, Perceived Value and Ethical Concerns. J. Curr. Issues Res. Advert. 2024, 45, 1–24. [Google Scholar] [CrossRef]
 - Wu, L.; Dodoo, N.A.; Wen, T.J. Disclosing AI’s Involvement in Advertising to Consumers: A Task-Dependent Perspective. J. Advert. 2024, 58, 20–38. [Google Scholar] [CrossRef]
 - Spais, G.; Jain, V. Consumer Behavior’s Evolution, Emergence, and Future in the AI Age Through the Lens of MR, VR, XR, Metaverse, and Robotics. J. Consum. Behav. 2025, 24, 1275–1299. [Google Scholar] [CrossRef]
 - Kotler, P.; Keller, K.L. Marketing Management; McGraw Hill: Columbus, OH, USA, 2016; pp. 324–326, 328–332. [Google Scholar]
 - Pine, B.J., II; Gilmore, J.H. Welcome to the Experience Economy. Harv. Bus. Rev. 1998, 76, 97–105. Available online: https://toerismevlaanderen.be/sites/toerismevlaanderen/files/public/atoms/files/welcome-to-the-experience-economy.pdf (accessed on 1 October 2025). [PubMed]
 - Liao, M.; Sundar, S. When E-Commerce Personalization Systems Show and Tell: Investigating the Relative Persuasive Appeal of Content-Based versus Collaborative Filtering. J. Advert. 2021, 51, 256–267. [Google Scholar] [CrossRef]
 - Franke, C.; Groeppel-Klein, A.; Müller, K. Consumers’ Responses to Virtual Influencers as Advertising Endorsers: Novel and Effective or Uncanny and Deceiving? J. Advert. 2023, 52, 523–539. [Google Scholar] [CrossRef]
 - Jans, S.D.; Cauberghe, V.; Hudders, L. How an Advertising Disclosure Alerts Young Adolescents to Sponsored Vlogs: The Moderating Role of a Peer-Based Advertising Literacy Intervention through an Informational Vlog. J. Advert. 2018, 47, 309–325. [Google Scholar] [CrossRef]
 - Synthesia Landing Page. 2025. Available online: https://www.synthesia.io/ (accessed on 30 September 2025).
 - Similarweb. Runwayml.Com Website Performance 2025. Available online: https://pro.similarweb.com/#/digitalsuite/websiteanalysis/overview/website-performance/*/999/1m?webSource=Total&key=runwayml.com (accessed on 30 September 2025).
 - QuestMobile. Monthly Report on China’s AI Application Industry, August. 2025. Available online: https://www.questmobile.com.cn/research/report/1967853261412208641 (accessed on 30 September 2025).
 - Kamath, C.; Alur, S. Ad Generation Modalities and Response to In-App Advertising—An Experimental Study. Glob. Knowl. Mem. Commun. 2024, 73, 1–15. [Google Scholar] [CrossRef]
 - Mitchell, A.A. The Effect of Verbal and Visual Components of Advertisements on Brand Attitudes and Attitude Toward the Advertisement. J. Consum. Res. 1986, 13, 12. [Google Scholar] [CrossRef]
 - Alpert, M.I.; Alpert, J.I.; Maltz, E.N. Purchase Occasion Influence on the Role of Music in Advertising. J. Bus. Res. 2005, 58, 369–376. [Google Scholar] [CrossRef]
 - Pedelty, M.; Kuecker, M. Seen to Be Heard? Gender, Voice, and Body in Television Advertisements. Commun. Crit. Cult. Stud. 2014, 11, 250–269. [Google Scholar] [CrossRef]
 - Levy, D.T.; Lindblom, E.N.; Fleischer, N.L.; Thrasher, J.; Mohlman, M.K.; Zhang, Y.; Monshouwer, K.; Nagelhout, G.E. Public Health Effects of Restricting Retail Tobacco Product Displays and Ads. Tob. Regul. Sci. 2015, 1, 61–75. [Google Scholar] [CrossRef]
 - Poels, K.; Dewitte, S. The Role of Emotions in Advertising: A Call to Action. J. Advert. 2019, 48, 81–90. [Google Scholar] [CrossRef]
 - Wu, L.; Dodoo, N.A.; Wen, T.J.; Ke, L. Understanding Twitter Conversations about Artificial Intelligence in Advertising Based on Natural Language Processing. Int. J. Advert. 2021, 41, 685–702. [Google Scholar] [CrossRef]
 - Knoth, N.; Decker, M.; Laupichler, M.C.; Pinski, M.; Buchholtz, N.; Bata, K.; Schultz, B. Developing a Holistic AI Literacy Assessment Matrix—Bridging Generic, Domain-Specific, and Ethical Competencies. Comput. Educ. Open 2024, 6, 100177. [Google Scholar] [CrossRef]
 - Keegan, B.J.; Iredale, S.; Naudé, P. Examining the Dark Force Consequences of AI as a New Actor in B2B Relationships. Ind. Mark. Manag. 2023, 115, 228–239. [Google Scholar] [CrossRef]
 - Pinski, M.; Hofmann, T.; Benlian, A. AI Literacy for the Top Management: An Upper Echelons Perspective on Corporate AI Orientation and Implementation Ability. Electron. Mark. 2024, 34, 24. [Google Scholar] [CrossRef]
 - Kim, H.-W.; Chan, H.C.; Gupta, S. Value-Based Adoption of Mobile Internet: An Empirical Investigation. Decis. Support Syst. 2007, 43, 111–126. [Google Scholar] [CrossRef]
 - Vidyanata, D. Understanding the Effect of Social Media Marketing on Purchase Intention: A Value-Based Adoption Model. J. Dyn. Manag. 2022, 13, 305–321. [Google Scholar] [CrossRef]
 - Mathavan, B.; Vafaei-Zadeh, A.; Hanifah, H.; Ramayah, T.; Kurnia, S. Understanding the Purchase Intention of Fitness Wearables: Using Value-Based Adoption Model. Asia-Pac. J. Bus. Adm. 2022, 16, 101–126. [Google Scholar] [CrossRef]
 - Lai, Z.J.; Leong, M.K.; Khoo, K.L.; Sidhu, S.K. Integrating Technology Acceptance Model and Value-Based Adoption Model to Determine Consumers’ Perception of Value and Intention to Adopt AR in Online Shopping. Asia Pac. J. Mark. Logist. 2024, 37, 1–19. [Google Scholar] [CrossRef]
 - Petty, R.E.; Cacioppo, J.T.; Goldman, R. Personal Involvement as a Determinant of Argument-Based Persuasion. J. Personal. Soc. Psychol. 1981, 41, 847–855. [Google Scholar] [CrossRef]
 - Kumar, S.; Prakash, G.; Gupta, B.; Cappiello, G. How E-WOM Influences Consumers’ Purchase Intention towards Private Label Brands on e-Commerce Platforms: Investigation through IAM (Information Adoption Model) and ELM (Elaboration Likelihood Model) Models. Technol. Forecast. Soc. Change 2023, 187, 122199. [Google Scholar] [CrossRef]
 - Kohler, E.; Mogaji, E.; Erkan, İ. Save the Trip to the Store: Sustainable Shopping, Electronic Word of Mouth on Instagram and the Impact on Cosmetic Purchase Intentions. Sustainability 2023, 15, 8036. [Google Scholar] [CrossRef]
 - Chakraborty, U.; Biswal, S.K. Is ChatGPT a Responsible Communication: A Study on the Credibility and Adoption of Conversational Artificial Intelligence. J. Promot. Manag. 2024, 30, 929–958. [Google Scholar] [CrossRef]
 - He, P.; Zhang, J. Dual-Pathway Effects of Product and Technological Attributes on Consumer Engagement in Augmented Reality Advertising. J. Theor. Appl. Electron. Commer. Res. 2025, 20, 196. [Google Scholar] [CrossRef]
 - Petrick, J. Development of a Multi-Dimensional Scale for Measuring the Perceived Value of a Service. J. Leis. Res. 2002, 34, 119–134. [Google Scholar] [CrossRef]
 - Sweeney, J.; Soutar, G. Consumer Perceived Value: The Development of a Multiple Item Scale. J. Retail. 2001, 77, 203–220. [Google Scholar] [CrossRef]
 - Mamun, M.R.A.; Ntsweng, O.; David, A.; Baah-Peprah, P.; Prybutok, V. What Drives User Intention to Continue Using Conversational AI? How Functional and Emotional Values Influence Continuance Intention. Ais Trans. Hum. -Comput. Interact. 2025, 17, 1–34. [Google Scholar] [CrossRef]
 - Al-Abdullatif, A.M.; Alsubaie, M.A. ChatGPT in Learning: Assessing Students’ Use Intentions through the Lens of Perceived Value and the Influence of AI Literacy. Behav. Sci. 2024, 14, 845. [Google Scholar] [CrossRef]
 - Chow, Y.C.M.; Ho, P.S.S.; Armutcu, B.; Tan, A.; Butt, M.-K. Role of Culture in How AI Affects the Brand Experience: Comparison of Belt and Road Countries. Asia-Pac. J. Bus. Adm. 2025. [Google Scholar] [CrossRef]
 - Gursoy, D.; Chi, O.H.; Lu, L.; Nunkoo, R. Consumers Acceptance of Artificially Intelligent (AI) Device Use in Service Delivery. Int. J. Inf. Manag. 2019, 49, 157–169. [Google Scholar] [CrossRef]
 - Rungruangjit, W.; Mongkol, K.; Piriyakul, I.; Charoenpornpanichkul, K. The Power of Human-like Virtual-Influencer-Generated Content: Impact on Consumers’ Willingness to Follow and Purchase Intentions. Comput. Hum. Behav. Rep. 2024, 16, 100523. [Google Scholar] [CrossRef]
 - Liu-Thompkins, Y.; Okazaki, S.; Li, H. Artificial Empathy in Marketing Interactions: Bridging the Human-AI Gap in Affective and Social Customer Experience. J. Acad. Mark. Sci. 2022, 50, 1198–1218. [Google Scholar] [CrossRef]
 - Longoni, C.; Cian, L. Artificial Intelligence in Utilitarian vs. Hedonic Contexts: The “Word-of-Machine” Effect. J. Mark. 2022, 86, 91–108. [Google Scholar] [CrossRef]
 - Hovland, C.I.; Janis, I.L.; Kelley, H.H. Communication and Persuasion: Psychological Studies of Opinion Change; Yale University Press: New Haven, CT, USA, 1953. [Google Scholar]
 - Cui, Y.; Zhang, H. Can Student Accurately Identify Artificial Intelligence Generated Content? An Exploration of AIGC Credibility from User Perspective in Education. Educ. Inf. Technol. 2025, 30, 16321–16346. [Google Scholar] [CrossRef]
 - Wang, C.; Wang, H.; Li, Y.; Dai, J.; Gu, X.; Yu, T. Factors Influencing University Students’ Behavioral Intention to Use Generative Artificial Intelligence: Integrating the Theory of Planned Behavior and AI Literacy. Int. J. Hum.-Comput. Interact. 2024, 41, 6649–6671. [Google Scholar] [CrossRef]
 - Fan, A.; Shen, H.; Wu, L.; Mattila, A.; Bilgihan, A. Whom Do We Trust? Cultural Differences in Consumer Responses to Online Recommendations. Int. J. Contemp. Hosp. Manag. 2018, 3, 1508–1525. [Google Scholar] [CrossRef]
 - Dana, L.-P.; Vrontis, D.; Chaudhuri, R.; Chatterjee, S. Entrepreneurship Strategy through Social Commerce Platform: An Empirical Approach Using Contagion Theory and Information Adoption Model. Sustainability 2023, 15, 12467. [Google Scholar] [CrossRef]
 - Sands, S.; Demsar, V.; Ferraro, C.; Wilson, S.; Wheeler, M.; Campbell, C. Easing AI-Advertising Aversion: How Leadership for the Greater Good Buffers Negative Response to AI-Generated Ads. Int. J. Advert. 2025, 44, 1–21. [Google Scholar] [CrossRef]
 - Rahman, M.K.; Hossain, M.A.; Ismail, N.A.; Hossen, M.S.; Sultana, M. Determinants of Students’ Adoption of AI Chatbots in Higher Education: The Moderating Role of Tech Readiness. Interact. Technol. Smart Educ. 2025, 22, 448–480. [Google Scholar] [CrossRef]
 - Cheng, J.; Xu, N.R.; Khan, N.U.; Singh, H.S.M. The Impacts of Artificial Intelligence Literacy, Green Absorptive Capacity, and Green Information System on Green Innovation. Corp. Soc. Responsib. Environ. Manag. 2024, 32, 2375–2389. [Google Scholar] [CrossRef]
 - Kim, T.; Im, I. Understanding Users’ AI Manipulation Intention: An Empirical Investigation of the Antecedents in the Context of AI Recommendation Algorithms. Inf. Manag. 2025, 62, 104061. [Google Scholar] [CrossRef]
 - Ullah, M.S.; Khan, M.K.; Oglu, G.R.A.; Yasmin, T. The Influence of Digital Literacy on Consumer Perceptions and E-Commerce Engagement. Policy Res. J. 2025, 3, 92–104. Available online: https://www.researchgate.net/profile/Muhammad-Khan-1632/publication/387750123_The_influence_of_digital_literacy_on_consumer_perceptions_and_e-commerce_engagement/links/677b78b100aa3770e0db5b63/The-inf (accessed on 8 August 2025).
 - Mahmood, M.; Batool, S.H.; Rafiq, M.; Safdar, M. Examining Digital Information Literacy as a Determinant of Women’s Online Shopping Behavior. Inf. Technol. People 2021, 35, 2098–2114. [Google Scholar] [CrossRef]
 - Nazzal, A.; Thoyib, A.; Zain, D.; Hussein, A.S. The Influence of Digital Literacy and Demographic Characteristics on Online Shopping Intention: An Empirical Study in Palestine. J. Asian Financ. Econ. Bus. 2021, 8, 205–215. [Google Scholar] [CrossRef]
 - Nizette, F.; Hammedi, W.; Riel, A.C.R.; van Steils, N. Why Should I Trust You? Influence of Explanation Design on Consumer Behavior in AI-Based Services. J. Serv. Manag. 2025, 36, 50–74. [Google Scholar] [CrossRef]
 - Teng, S.; Khong, K.W.; Goh, W.W.; Chong, A.Y.L. Examining the Antecedents of Persuasive EWOM Messages in Social Media. Inf. Rev. 2014, 38, 746–768. [Google Scholar] [CrossRef]
 - Shen, X.; Cheung, C.M.K.; Lee, M.K.O. What Leads Students to Adopt Information from Wikipedia? An Empirical Investigation into the Role of Trust and Information Usefulness. Br. J. Educ. Technol. 2012, 44, 502–517. [Google Scholar] [CrossRef]
 - Hsu, L.-C. Effect of EWOM Review on Beauty Enterprise: A New Interpretation of the Attitude Contagion Theory and Information Adoption Model. J. Enterp. Inf. Manag. 2021, 35, 376–413. [Google Scholar] [CrossRef]
 - Carolus, A.; Koch, M.; Straka, S.; Latoschik, M.; Wienrich, C. MAILS—Meta AI Literacy Scale: Development and Testing of an AI Literacy Questionnaire Based on Well-Founded Competency Models and Psychological Change- and Meta-Competencies. Comput. Hum. Behav. Artif. Hum. 2023, 1, 100014. [Google Scholar] [CrossRef]
 - Hwang, H.S.; Zhu, L.; Cui, Q. Development and Validation of a Digital Literacy Scale in the Artificial Intelligence Era for College Students. KSII Trans. Internet Inf. Syst. 2023, 17, 2241–2271. [Google Scholar] [CrossRef]
 - Celik, I. Exploring the Determinants of Artificial Intelligence (AI) Literacy: Digital Divide, Computational Thinking, Cognitive Absorption. Telemat. Inform. 2023, 83, 102026. [Google Scholar] [CrossRef]
 - Bell, E.; Bryman, A. Business Research Methods; Oxford University Press: Oxford, UK, 2022; pp. 285–290. [Google Scholar]
 - Jamil, R.A.; Qayyum, A. Word of Mouse vs. Word of Influencer? An Experimental Investigation into the Consumers’ Preferred Source of Online Information. Manag. Res. Rev. 2021, 45, 173–197. [Google Scholar] [CrossRef]
 - Silaban, P.H.; Chen, W.-K.; Sormin, S.; Panjaitan, Y.N.B.P.; Silalahi, A.D.K. How Does Electronic Word of Mouth on Instagram Affect Travel Behaviour in Indonesia: A Perspective of the Information Adoption Model. Cogent Soc. Sci. 2023, 9, 2163525. [Google Scholar] [CrossRef]
 - Erkan, I. The Influence of Electronic Word of Mouth in Social Media on Consumers’ Purchase Intention. Ph.D. Thesis, Brunel University, London, UK, 2016. [Google Scholar]
 - Hair, J.F.; Risher, J.J.; Sarstedt, M.; Ringle, C.M. When to Use and How to Report the Results of PLS-SEM. Eur. Bus. Rev. 2019, 31, 2–24. [Google Scholar] [CrossRef]
 - Hu, L.; Bentler, P.M. Cutoff Criteria for Fit Indexes in Covariance Structure Analysis: Conventional Criteria versus New Alternatives. Struct. Equ. Model. A Multidiscip. J. 1999, 6, 1–55. [Google Scholar] [CrossRef]
 - Schiavo, G.; Businaro, S.; Zancanaro, M. Comprehension, Apprehension, and Acceptance: Understanding the Influence of Literacy and Anxiety on Acceptance of Artificial Intelligence. Technol. Soc. 2024, 77, 102537. [Google Scholar] [CrossRef]
 - Wu, L.; Wen, T.J. Understanding AI Advertising from the Consumer Perspective. J. Advert. Res. 2021, 61, 133–146. [Google Scholar] [CrossRef]
 - Wang, X.; Zhang, Z.; Jiang, Q. The Effectiveness of Human vs. AI Voice-over in Short Video Advertisements: A Cognitive Load Theory Perspective. J. Retail. Consum. Serv. 2024, 81, 104005. [Google Scholar] [CrossRef]
 - Barsalou, L. Grounded Cognition. Annu. Rev. Psychol. 2008, 59, 617–645. [Google Scholar] [CrossRef]
 - Rizzolatti, G.; Craighero, L. The Mirror-Neuron System. Annu. Rev. Neurosci. 2004, 27, 169–192. [Google Scholar] [CrossRef]
 - Reis, M.I.; Gonçalves, J.N.C.; Cortez, P.; Carvalho, M.S.; Fernandes, J.M. A Context-Aware Decision Support System for Selecting Explainable Artificial Intelligence Methods in Business Organizations. Comput. Ind. 2025, 165, 104233. [Google Scholar] [CrossRef]
 - Mori, M.; MacDorman, K.; Kageki, N. The Uncanny Valley. IEEE Robot. Autom. Mag. 2012, 19, 98–100. [Google Scholar] [CrossRef]
 - Zhou, T.; Li, S. Examining Consumer Impulsive Purchase Intention in Virtual AI Streaming: A S-O-R Perspective. J. Theor. Appl. Electron. Commer. Res. 2025, 20, 204. [Google Scholar] [CrossRef]
 


| Constructs | Operational Definitions | References | 
|---|---|---|
| Consumer AI literacy | The degree to which consumers possess the knowledge, skills, and critical understanding necessary to recognize, evaluate, and engage with AIGC, particularly AISVs. | [20,23] | 
| AISV emotional value | The affective utility consumers experience during AISV viewing, characterized by positive emotional responses. | [60,61] | 
| AISV information usefulness | The extent to which product or service-related information in AISVs enhances consumers’ purchase decisions. | [18,56] | 
| Source credibility | The perceived ability and motivation of the vlogger in an AISV to produce accurate and truthful information. | [70,82] | 
| AISV information adoption | The extent to which consumers accept and utilize the information from AISVs to support their purchase decisions. | [83] | 
| Purchase intention | Consumers’ willingness to purchase products or services after watching AISVs. | [84] | 
| Constructs | Measurement Items | Questionnaire Items | Variables’ Level of Measurement | References | 
|---|---|---|---|---|
| AI Literacy (AIL) | AIL1 | I can distinguish if I interact with an AI or a “real human”. | Interval | [85] | 
| AIL2 | I can operate AI-generated video applications in everyday life. | Interval | ||
| AIL3 | I can tell if I am dealing with a vlog based on artificial intelligence. | Interval | ||
| AIL4 | I can assess what advantages and disadvantages the use of an artificial intelligence entails. | Interval | ||
| AIL5 | I know the most important concepts of the topic “artificial intelligence”. | Interval | ||
| AIL6 | I can think of new uses for AI. | Interval | ||
| Based on your feelings after watching AISVs, please evaluate the following statements: | [65] | |||
| Emotion value (EM)  | EM1 | Very boring 1–2–3–4–5 Very relaxed | Interval | |
| EM2 | Very depressed 1–2–3–4–5 Very satisfied | Interval | ||
| EM3 | Very hopeless 1–2–3–4–5 Full of hope | Interval | ||
| EM4 | Very annoyed 1–2–3–4–5 Very pleased | Interval | ||
| If you choose to watch videos labeled “AI-generated” or “Potentially AI-generated,” please evaluate the following statements based on the AISVs you’ve watched | [89,90] | |||
| Information Usefulness (IU) | IU1 | The product or service-related information in the AISV is valuable. | Interval | |
| IU2 | The product or service-related information in the AISV is informative. | Interval | ||
| IU3 | The product or service-related information in the AISV is helpful. | Interval | ||
| IU4 | The product or service-related information in the AISV is useful. | Interval | ||
| Source credibility (SC) | SC1 | I believe this vlogger is knowledgeable. | Interval | [82] | 
| SC2 | I believe this vlogger is an expert. | Interval | ||
| SC3 | I believe this vlogger or is reliable. | Interval | ||
| SC4 | I believe this vlogger or is trustworthy. | Interval | ||
| Information Adoption (IA) | IA1 | The information in this AISV enhanced my knowledge of the product or service. | Interval | [84,90] | 
| IA2 | This AISV had a significant impact on me. | Interval | ||
| IA3 | I agree with the viewpoints presented in this AISV. | Interval | ||
| Purchase Intention (PI) | When the AISVs you watch and provides corresponding purchase links, please evaluate the following statements. | [84,91] | ||
| PI1 | It is very likely that I will buy the product or service. | Interval | ||
| PI2 | I will definitely try the product or service. | Interval | ||
| PI3 | If I am in need, I would buy the product or service. | Interval | ||
| PI4 | I will buy the product or service next time I need it. | Interval | 
| Constructs | Cronbach’s α | KMO | CR | Factor Loading | 
|---|---|---|---|---|
| AIL | 0.921 | 0.913 | 0.918 | 0.763–0.841 | 
| EM | 0.928 | 0.897 | 0.932 | 0.865–0.895 | 
| IU | 0.908 | 0.851 | 0.916 | 0.841–0.868 | 
| SC | 0.925 | 0.839 | 0.921 | 0.839–0.887 | 
| IA | 0.889 | 0.843 | 0.872 | 0.815–0.851 | 
| PI | 0.921 | 0.844 | 0.917 | 0.833–0.879 | 
| Fit Index | Tangible Product | Experiential Service | 
|---|---|---|
| χ2_ms (df = 312) | 881.437 | 924.563 | 
| p > χ2 | 0.000 | 0.000 | 
| χ2_bs (df = 351) | 8103.275 | 7842.190 | 
| p > χ2 | 0.000 | 0.000 | 
| RMSEA | 0.069 | 0.075 | 
| 90% CI | [0.062, 0.076] | [0.068, 0.082] | 
| p close | 0.019 | 0.003 | 
| AIC | 1011.437 | 1054.563 | 
| BIC | 1258.966 | 1308.828 | 
| CFI | 0.932 | 0.923 | 
| TLI | 0.917 | 0.908 | 
| SRMR | 0.051 | 0.058 | 
| CD | 0.944 | 0.928 | 
| Structural Path | Type | β | p-Value | z-Score | Standard Error | Bootstrap 95% CI | Result | |
|---|---|---|---|---|---|---|---|---|
| H1 | AIL → EM | T | 0.521 | 0.000 | 6.89 | 0.076 | (0.374, 0.668) | Supported | 
| E | 0.548 | 0.000 | 7.12 | 0.077 | (0.396, 0.700) | Supported | ||
| H2 | EM → IA | T | 0.235 | 0.008 | 2.67 | 0.088 | (0.062, 0.408) | Supported | 
| E | 0.220 | 0.015 | 2.43 | 0.091 | (0.042, 0.398) | Supported | ||
| H3 | EM → PI | T | 0.087 | 0.298 | 1.04 | 0.084 | (−0.078, 0.252) | Not Supported | 
| E | 0.064 | 0.461 | 0.74 | 0.086 | (−0.102, 0.230) | Not Supported | ||
| H4 | AIL → IU | T | 0.592 | 0.000 | 7.58 | 0.078 | (0.439, 0.745) | Supported | 
| E | 0.567 | 0.000 | 7.21 | 0.079 | (0.412, 0.722) | Supported | ||
| H5 | IU → IA | T | 0.320 | 0.000 | 4.38 | 0.073 | (0.177, 0.463) | Supported | 
| E | 0.340 | 0.000 | 4.59 | 0.074 | (0.195, 0.485) | Supported | ||
| H6 | AIL → SC | T | 0.508 | 0.000 | 6.45 | 0.079 | (0.354, 0.662) | Supported | 
| E | 0.534 | 0.000 | 6.78 | 0.079 | (0.379, 0.689) | Supported | ||
| H7 | SC → IA | T | 0.185 | 0.045 | 2.01 | 0.092 | (0.005, 0.365) | Supported | 
| E | 0.165 | 0.076 | 1.77 | 0.093 | (−0.018, 0.348) | Not Supported | ||
| H8 | AIL → IA | T | 0.156 | 0.067 | 1.83 | 0.085 | (−0.011, 0.323) | Not Supported | 
| E | 0.142 | 0.089 | 1.70 | 0.084 | (−0.022, 0.306) | Not Supported | ||
| H9 | AIL → PI | T | 0.098 | 0.185 | 1.33 | 0.074 | (−0.046, 0.242) | Not Supported | 
| E | 0.165 | 0.042 | 2.03 | 0.081 | (0.006, 0.324) | Supported | ||
| H10 | IA → PI | T | 0.618 | 0.000 | 8.12 | 0.076 | (0.468, 0.768) | Supported | 
| E | 0.564 | 0.000 | 7.45 | 0.076 | (0.415, 0.713) | Supported | 
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.  | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Q.; Osman, L.H.; Lian, Z.; Wel, C.A.C.; Hamid, S.N.A. From Perception to Purchase: How AI Literacy Shapes Consumer Decisions in AI-Generated Sponsored Vlogs Across Products and Services. J. Theor. Appl. Electron. Commer. Res. 2025, 20, 302. https://doi.org/10.3390/jtaer20040302
Liu Q, Osman LH, Lian Z, Wel CAC, Hamid SNA. From Perception to Purchase: How AI Literacy Shapes Consumer Decisions in AI-Generated Sponsored Vlogs Across Products and Services. Journal of Theoretical and Applied Electronic Commerce Research. 2025; 20(4):302. https://doi.org/10.3390/jtaer20040302
Chicago/Turabian StyleLiu, Qianwen, Lokhman Hakim Osman, Zhongxing Lian, Che Aniza Che Wel, and Siti Ngayesah Ab. Hamid. 2025. "From Perception to Purchase: How AI Literacy Shapes Consumer Decisions in AI-Generated Sponsored Vlogs Across Products and Services" Journal of Theoretical and Applied Electronic Commerce Research 20, no. 4: 302. https://doi.org/10.3390/jtaer20040302
APA StyleLiu, Q., Osman, L. H., Lian, Z., Wel, C. A. C., & Hamid, S. N. A. (2025). From Perception to Purchase: How AI Literacy Shapes Consumer Decisions in AI-Generated Sponsored Vlogs Across Products and Services. Journal of Theoretical and Applied Electronic Commerce Research, 20(4), 302. https://doi.org/10.3390/jtaer20040302
        
