Algorithmic Fairness and Digital Financial Stress: Evidence from AI-Driven E-Commerce Platforms in OECD Economies
Abstract
1. Introduction
2. Literature Review
3. Variables and Method
3.1. Variables
3.2. Method
4. Results and Discussion
4.1. Basic Statistical Analysis
4.2. The Effect of Algorithmic Fairness on Digital Financial Stress
4.3. Robustness Test
4.4. Digital Literacy as a Moderator: Unpacking Interaction Effects
4.5. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mittelstadt, B.D.; Allo, P.; Taddeo, M.; Wachter, S.; Floridi, L. The Ethics of Algorithms: Mapping the Debate. Big Data Soc. 2016, 3, 2053951716679679. [Google Scholar] [CrossRef]
- Martin, K. Ethical Implications and Accountability of Algorithms. J. Bus. Ethics 2019, 160, 835–850. [Google Scholar] [CrossRef]
- Habibi, M.R.; Laroche, M.; Richard, M.-O. Testing an Extended Model of Consumer Behavior in the Context of Social Media-Based Brand Communities. Comput. Hum. Behav. 2016, 62, 292–302. [Google Scholar] [CrossRef]
- Frasquet, M.; Molla Descals, A.; Ruiz-Molina, M.E. Understanding Loyalty in Multichannel Retailing: The Role of Brand Trust and Brand Attachment. Int. J. Retail. Distrib. Manag. 2017, 45, 608–625. [Google Scholar] [CrossRef]
- Coelho, P.S.; Rita, P.; Santos, Z.R. On the Relationship between Consumer-Brand Identification, Brand Community, and Brand Loyalty. J. Retail. Consum. Serv. 2018, 43, 101–110. [Google Scholar] [CrossRef]
- Kleinberg, J.; Ludwig, J.; Mullainathan, S.; Sunstein, C.R. Discrimination in the Age of Algorithms. J. Leg. Anal. 2018, 10, 113–174. [Google Scholar] [CrossRef]
- Cowgill, B.; Dell’Acqua, F.; Deng, S.; Hsu, D.; Verma, N.; Chaintreau, A. Biased Programmers? Or Biased Data? A Field Experiment in Operationalizing AI Ethics. In Proceedings of the 21st ACM Conference on Economics and Computation, Virtual Event Hungary, 13–24 July 2020; ACM: New York, NY, USA, 2020; pp. 679–681. [Google Scholar]
- Heinrichs, B. Discrimination in the Age of Artificial Intelligence. AI Soc. 2022, 37, 143–154. [Google Scholar] [CrossRef]
- Binns, R.; Van Kleek, M.; Veale, M.; Lyngs, U.; Zhao, J.; Shadbolt, N. “It’s Reducing a Human Being to a Percentage”: Perceptions of Justice in Algorithmic Decisions. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, Montreal, QC, Canada, 21–26 April 2018; ACM: New York, NY, USA, 2018; pp. 1–14. [Google Scholar]
- Obermeyer, Z.; Powers, B.; Vogeli, C.; Mullainathan, S. Dissecting Racial Bias in an Algorithm Used to Manage the Health of Populations. Science 2019, 366, 447–453. [Google Scholar] [CrossRef]
- French, D.; McKillop, D. The Impact of Debt and Financial Stress on Health in Northern Irish Households. J. Eur. Soc. Policy 2017, 27, 458–473. [Google Scholar] [CrossRef]
- Agarwal, S.; Chomsisengphet, S.; Mahoney, N.; Stroebel, J. Do Banks Pass through Credit Expansions to Consumers Who Want to Borrow? Q. J. Econ. 2018, 133, 129–190. [Google Scholar] [CrossRef]
- Adomavicius, G.; Yang, M. Integrating Behavioral, Economic, and Technical Insights to Understand and Address Algorithmic Bias: A Human-Centric Perspective. ACM Trans. Manage. Inf. Syst. 2022, 13, 1–27. [Google Scholar] [CrossRef]
- Yang, Q.; Lee, Y.-C. Ethical AI in Financial Inclusion: The Role of Algorithmic Fairness on User Satisfaction and Recommendation. Big Data Cogn. Comput. 2024, 8, 105. [Google Scholar] [CrossRef]
- Brüggen, L.; Gianni, R.; de Haan, F.; Hogreve, J.; Meacham, D.; Post, T.; van der Werf, M. AI-Based Financial Advice: An Ethical Discourse on AI-Based Financial Advice and Ethical Reflection Framework. J. Public Policy Mark. 2025, 44, 436–456. [Google Scholar] [CrossRef]
- Lee, M.K.; Baykal, S. Algorithmic Mediation in Group Decisions: Fairness Perceptions of Algorithmically Mediated vs. Discussion-Based Social Division. In Proceedings of the 2017 ACM Conference on Computer Supported Cooperative Work and Social Computing, Portland, OR, USA, 25 February–1 March 2017; ACM: New York, NY, USA; pp. 1035–1048. [Google Scholar]
- Veale, M.; Edwards, L. Clarity, Surprises, and Further Questions in the Article 29 Working Party Draft Guidance on Automated Decision-Making and Profiling. Comput. Law Secur. Rev. 2018, 34, 398–404. [Google Scholar] [CrossRef]
- Raghavan, M.; Barocas, S.; Kleinberg, J.; Levy, K. Mitigating Bias in Algorithmic Hiring: Evaluating Claims and Practices. In Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, Barcelona, Spain, 27–30 January 2020; ACM: New York, NY, USA; pp. 469–481. [Google Scholar]
- Su, C.; Yu, G.; Wang, J.; Yan, Z.; Cui, L. A Review of Causality-Based Fairness Machine Learning. Intell. Robot. 2022, 2, 244–274. [Google Scholar] [CrossRef]
- Card, D.; DellaVigna, S.; Malmendier, U. The Role of Theory in Field Experiments. J. Econ. Perspect. 2011, 25, 39–62. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, H. Financial Literacy, Self-Efficacy and Risky Credit Behavior among College Students: Evidence from Online Consumer Credit. J. Behav. Exp. Financ. 2021, 32, 100569. [Google Scholar] [CrossRef]
- Yadava, A. The Impact of AI-Driven Algorithmic Trading on Market Efficiency and Volatility: Evidence from Global Financial Markets. Inf. Sci. 2024, 36, 102015. [Google Scholar]
- Sharma, G.M.; Nghiem, X.-H.; Gaur, P.; Gangodawilage, D.S.K. Ethical Implications of AI-Driven Outsourcing: Ensuring Bias Mitigation, Fairness, and Accountability. In Global Work Arrangements and Outsourcing in the Age of AI; IGI Global Scientific Publishing: Hershey, PA, USA, 2025; pp. 421–450. [Google Scholar]
- Salignac, F.; Marjolin, A.; Reeve, R.; Muir, K. Conceptualizing and Measuring Financial Resilience: A Multidimensional Framework. Soc. Indic. Res. 2019, 145, 17–38. [Google Scholar] [CrossRef]
- Rahman, M.M.; Sadik, N. Measuring Scale for Digital Financial Services, Economic Growth, Performance, and Environmental Sustainability: Evidence from EFA and CFA. Qual. Quant. 2025, 59, 1661–1694. [Google Scholar] [CrossRef]
- Deng, X.; Liu, Y.; Xiong, Y. Analysis on the Development of Digital Economy in Guangdong Province Based on Improved Entropy Method and Multivariate Statistical Analysis. Entropy 2020, 22, 1441. [Google Scholar] [CrossRef]
- Pan, W.; Xie, T.; Wang, Z.; Ma, L. Digital Economy: An Innovation Driver for Total Factor Productivity. J. Bus. Res. 2022, 139, 303–311. [Google Scholar] [CrossRef]
- Bruno, G.; Diglio, A.; Piccolo, C.; Pipicelli, E. A Reduced Composite Indicator for Digital Divide Measurement at the Regional Level: An Application to the Digital Economy and Society Index (DESI). Technol. Forecast. Soc. Change 2023, 190, 122461. [Google Scholar] [CrossRef]
- Felzmann, H.; Villaronga, E.F.; Lutz, C.; Tamò-Larrieux, A. Transparency You Can Trust: Transparency Requirements for Artificial Intelligence between Legal Norms and Contextual Concerns. Big Data Soc. 2019, 6, 2053951719860542. [Google Scholar] [CrossRef]
- Mirghaderi, L.; Sziron, M.; Hildt, E. Ethics and Transparency Issues in Digital Platforms: An Overview. AI 2023, 4, 831–843. [Google Scholar] [CrossRef]
- Akter, S.; Dwivedi, Y.K.; Sajib, S.; Biswas, K.; Bandara, R.J.; Michael, K. Algorithmic Bias in Machine Learning-Based Marketing Models. J. Bus. Res. 2022, 144, 201–216. [Google Scholar] [CrossRef]
- Fabris, A.; Messina, S.; Silvello, G.; Susto, G.A. Algorithmic Fairness Datasets: The Story so Far. Data Min. Knowl. Discov. 2022, 36, 2074–2152. [Google Scholar] [CrossRef]
- Hacker, P.; Cordes, J.; Rochon, J. Regulating Gatekeeper Artificial Intelligence and Data: Transparency, Access and Fairness under the Digital Markets Act, the General Data Protection Regulation and Beyond. Eur. J. Risk Regul. 2024, 15, 49–86. [Google Scholar] [CrossRef]
- Nanda, A.P.; Banerjee, R. Consumer’s Subjective Financial Well-being: A Systematic Review and Research Agenda. Int. J. Consum. Stud. 2021, 45, 750–776. [Google Scholar] [CrossRef]
- Chetty, K.; Qigui, L.; Gcora, N.; Josie, J.; Wenwei, L.; Fang, C. Bridging the Digital Divide: Measuring Digital Literacy. Economics 2018, 12, 20180023. [Google Scholar] [CrossRef]
- Tirado-Morueta, R.; Aguaded-Gómez, J.I.; Hernando-Gómez, Á. The Socio-Demographic Divide in Internet Usage Moderated by Digital Literacy Support. Technol. Soc. 2018, 55, 47–55. [Google Scholar] [CrossRef]
- Chen, J.; Hou, H.; Liao, Z.; Wang, L. Digital Environment, Digital Literacy, and Farmers’ Entrepreneurial Behavior: A Discussion on Bridging the Digital Divide. Sustainability 2024, 16, 10220. [Google Scholar] [CrossRef]
- Ariansyah, K.; Sirait, E.R.E.; Nugroho, B.A.; Suryanegara, M. Drivers of and Barriers to E-Commerce Adoption in Indonesia: Individuals’ Perspectives and the Implications. Telecommun. Policy 2021, 45, 102219. [Google Scholar] [CrossRef]
- Hendricks, S.; Mwapwele, S.D. A Systematic Literature Review on the Factors Influencing E-Commerce Adoption in Developing Countries. Data Inf. Manag. 2024, 8, 100045. [Google Scholar] [CrossRef]
- Carlsson, H.; Larsson, S.; Svensson, L.; Åström, F. Consumer Credit Behavior in the Digital Context: A Bibliometric Analysis and Literature Review. J. Financ. Couns. Plan. 2017, 28, 76–94. [Google Scholar] [CrossRef]
- Koskelainen, T.; Kalmi, P.; Scornavacca, E.; Vartiainen, T. Financial Literacy in the Digital Age—A Research Agenda. J. Consum. Aff. 2023, 57, 507–528. [Google Scholar] [CrossRef]
- Charfeddine, L.; Umlai, M.I.; El-Masri, M. Impact of Financial Literacy, Perceived Access to Finance, ICT Use, and Digitization on Credit Constraints: Evidence from Qatari MSME Importers. Financ. Innov. 2024, 10, 15. [Google Scholar] [CrossRef]
- Ghosh, S. The Impact of Economic Uncertainty and Financial Stress on Consumer Confidence: The Case of Japan. J. Asian Bus. Econ. Stud. 2022, 29, 50–65. [Google Scholar] [CrossRef]
- Yagil, D.; Cohen, M. Financial Uncertainty and Anxiety During the COVID-19 Pandemic: The Mediating Role of Future Orientation. Eur. J. Health Psychol. 2023, 30, 65–73. [Google Scholar] [CrossRef]
- Ahamed, A.J.; Limbu, Y.B. Financial Anxiety: A Systematic Review. Int. J. Bank Mark. 2024, 42, 1666–1694. [Google Scholar] [CrossRef]
- Seldal, M.M.N.; Nyhus, E.K. Financial Vulnerability, Financial Literacy, and the Use of Digital Payment Technologies. J. Consum. Policy 2022, 45, 281–306. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Mao, Z. Research on the Impact of Digital Inclusive Finance on the Financial Vulnerability of Aging Families. Risks 2023, 11, 209. [Google Scholar] [CrossRef]
- Hazlett, C.; Wainstein, L. Understanding, Choosing, and Unifying Multilevel and Fixed Effect Approaches. Political Anal. 2022, 30, 46–65. [Google Scholar] [CrossRef]
- Rüttenauer, T.; Ludwig, V. Fixed Effects Individual Slopes: Accounting and Testing for Heterogeneous Effects in Panel Data or Other Multilevel Models. Sociol. Methods Res. 2023, 52, 43–84. [Google Scholar] [CrossRef]
- Breuer, M.; Dehaan, E. Using and Interpreting Fixed Effects Models. J. Account. Res. 2024, 62, 1183–1226. [Google Scholar] [CrossRef]
- Han, C.; Phillips, P.C. GMM Estimation for Dynamic Panels with Fixed Effects and Strong Instruments at Unity. Econom. Theory 2010, 26, 119–151. [Google Scholar] [CrossRef]
- Lee, L.; Yu, J. Efficient GMM Estimation of Spatial Dynamic Panel Data Models with Fixed Effects. J. Econom. 2014, 180, 174–197. [Google Scholar] [CrossRef]
- Breitung, J.; Kripfganz, S.; Hayakawa, K. Bias-Corrected Method of Moments Estimators for Dynamic Panel Data Models. Econom. Stat. 2022, 24, 116–132. [Google Scholar] [CrossRef]
- Arellano, M.; Bond, S. Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations. Rev. Econ. Stud. 1991, 58, 277–297. [Google Scholar] [CrossRef]
- Roodman, D. How to Do Xtabond2: An Introduction to Difference and System GMM in Stata. Stata J. Promot. Commun. Stat. Stata 2009, 9, 86–136. [Google Scholar] [CrossRef]
- Shin, D.; Zhong, B.; Biocca, F.A. Beyond User Experience: What Constitutes Algorithmic Experiences? Int. J. Inf. Manag. 2020, 52, 102061. [Google Scholar] [CrossRef]
- Shin, D.; Rasul, A.; Fotiadis, A. Why Am I Seeing This? Deconstructing Algorithm Literacy through the Lens of Users. Internet Res. 2022, 32, 1214–1234. [Google Scholar] [CrossRef]
- Ekpo, A.E.; Drenten, J.; Albinsson, P.A.; Anong, S.; Appau, S.; Chatterjee, L.; Dadzie, C.A.; Echelbarger, M.; Muldrow, A.; Ross, S.M.; et al. The Platformed Money Ecosystem: Digital Financial Platforms, Datafication, and Reimagining Financial Well-being. J. Consum. Aff. 2022, 56, 1062–1078. [Google Scholar] [CrossRef]
- Kordzadeh, N.; Ghasemaghaei, M. Algorithmic Bias: Review, Synthesis, and Future Research Directions. Eur. J. Inf. Syst. 2022, 31, 388–409. [Google Scholar] [CrossRef]
- Chugh, P.; Jain, V. Artificial Intelligence (AI) Empowerment in E-Commerce: A Bibliometric Voyage. NMIMS Manag. Rev. 2024, 32, 159–173. [Google Scholar] [CrossRef]
- Dolata, M.; Feuerriegel, S.; Schwabe, G. A Sociotechnical View of Algorithmic Fairness. Inf. Syst. J. 2022, 32, 754–818. [Google Scholar] [CrossRef]
- Bar-Gill, O.; Sunstein, C.R.; Talgam-Cohen, I. Algorithmic Harm in Consumer Markets. J. Leg. Anal. 2023, 15, 1–47. [Google Scholar] [CrossRef]
- Shin, D.; Lim, J.S.; Ahmad, N.; Ibahrine, M. Understanding User Sensemaking in Fairness and Transparency in Algorithms: Algorithmic Sensemaking in over-the-Top Platform. AI Soc. 2024, 39, 477–490. [Google Scholar] [CrossRef]
- Balcilar, M.; Berisha, E.; Gupta, R.; Pierdzioch, C. Time-Varying Evidence of Predictability of Financial Stress in the United States over a Century: The Role of Inequality. Struct. Change Econ. Dyn. 2021, 57, 87–92. [Google Scholar] [CrossRef]
- Berisha, E.; Gabauer, D.; Gupta, R.; Nel, J. Time-Varying Predictability of Financial Stress on Inequality in United Kingdom. J. Econ. Stud. 2023, 50, 987–1007. [Google Scholar] [CrossRef]
- Babajide, A.; Osabuohien, E.; Tunji-Olayeni, P.; Falola, H.; Amodu, L.; Olokoyo, F.; Adegboye, F.; Ehikioya, B. Financial Literacy, Financial Capabilities, and Sustainable Business Model Practice among Small Business Owners in Nigeria. J. Sustain. Financ. Invest. 2023, 13, 1670–1692. [Google Scholar] [CrossRef]
- Malchenko, Y.; Gogua, M.; Golovacheva, K.; Smirnova, M.; Alkanova, O. A Critical Review of Digital Capability Frameworks: A Consumer Perspective. Digit. Policy Regul. Gov. 2020, 22, 269–288. [Google Scholar] [CrossRef]
- Vissenberg, J.; d’Haenens, L.; Livingstone, S. Digital Literacy and Online Resilience as Facilitators of Young People’s Well-Being?: A Systematic Review. Eur. Psychol. 2022, 27, 76–85. [Google Scholar] [CrossRef]
- Du, Y.; Wang, Q.; Zhou, J. How Does Digital Inclusive Finance Affect Economic Resilience: Evidence from 285 Cities in China. Int. Rev. Financ. Anal. 2023, 88, 102709. [Google Scholar] [CrossRef]
- Ma, W.; Nie, P.; Zhang, P.; Renwick, A. Impact of Internet Use on Economic Well-being of Rural Households: Evidence from China. Rev. Dev. Econ. 2020, 24, 503–523. [Google Scholar] [CrossRef]
- Tay, L.-Y.; Tai, H.-T.; Tan, G.-S. Digital Financial Inclusion: A Gateway to Sustainable Development. Heliyon 2022, 8, e09766. [Google Scholar] [CrossRef]
- Gao, Q.; Sun, M.; Chen, L. The Impact of Digital Inclusive Finance on Agricultural Economic Resilience. Financ. Res. Lett. 2024, 66, 105679. [Google Scholar] [CrossRef]
- Xiao, J.J.; Kim, K.T. The Able Worry More? Debt Delinquency, Financial Capability, and Financial Stress. J. Fam. Econ. Issues 2022, 43, 138–152. [Google Scholar] [CrossRef]
- Visconti-Caparrós, J.M.; Campos-Blázquez, J.R. The Development of Alternate Payment Methods and Their Impact on Customer Behavior: The Bizum Case in Spain. Technol. Forecast. Soc. Change 2022, 175, 121330. [Google Scholar] [CrossRef]
- Di Guilmi, C.; Fujiwara, Y. Dual Labor Market, Financial Fragility, and Deflation in an Agent-Based Model of the Japanese Macroeconomy. J. Econ. Behav. Organ. 2022, 196, 346–371. [Google Scholar] [CrossRef]
- Mathieu, S.; Treloar, A.; Hawgood, J.; Ross, V.; Kõlves, K. The Role of Unemployment, Financial Hardship, and Economic Recession on Suicidal Behaviors and Interventions to Mitigate Their Impact: A Review. Front. Public Health 2022, 10, 907052. [Google Scholar] [CrossRef]
- Midões, C.; Seré, M. Living with Reduced Income: An Analysis of Household Financial Vulnerability Under COVID-19. Soc. Indic. Res. 2022, 161, 125–149. [Google Scholar] [CrossRef] [PubMed]
- Branikas, I.; Hong, H.; Xu, J. Location Choice, Portfolio Choice. J. Financ. Econ. 2020, 138, 74–94. [Google Scholar] [CrossRef]
- Gomes, F.; Haliassos, M.; Ramadorai, T. Household Finance. J. Econ. Lit. 2021, 59, 919–1000. [Google Scholar] [CrossRef]
- Boado-Penas, M.C.; Nave, J.M.; Toscano, D. Financial Market Participation and Retirement Age of the UK Population. Int. J. Financ. Stud. 2023, 11, 37. [Google Scholar] [CrossRef]
- Kawsar, M.; Satata, F.F.; Wahid, M.A.E. Being Fair to Customers: A Strategy in Enhancing Customer Engagement and Loyalty in the Bangladeshi Mobile Telecommunication Industry. Shanlax Int. J. Manag. 2024, 11, 6879. [Google Scholar] [CrossRef]
- Peña-García, N.; ter Horst, E. Loyalty beyond Transactions: The Role of Perceived Brand Ethics in e-Commerce. Front. Commun. 2025, 10, 1605171. [Google Scholar] [CrossRef]
- Yang, Z.; Hu, D.; Chen, X. The Role of Omnichannel Integration and Digital Value in Building Brand Trust: A Customer Psychological Perception Perspective. Internet Res. 2025, 35, 1029–1064. [Google Scholar] [CrossRef]
- Dey, B.L.; Yen, D.; Samuel, L. Digital Consumer Culture and Digital Acculturation. Int. J. Inf. Manag. 2020, 51, 102057. [Google Scholar] [CrossRef]
- Sharma, S.; Kar, A.K.; Gupta, M.P.; Dwivedi, Y.K.; Janssen, M. Digital Citizen Empowerment: A Systematic Literature Review of Theories and Development Models. Inf. Technol. Dev. 2022, 28, 660–687. [Google Scholar] [CrossRef]
- Setiadi, D.; Nurhayati, S.; Ansori, A.; Zubaidi, M.; Amir, R. Youth’s Digital Literacy in the Context of Community Empowerment in an Emerging Society 5.0. Society 2023, 11, 1–12. [Google Scholar] [CrossRef]
- Chomicz-Grabowska, A.M.; Orlowski, L.T. Financial Market Risk and Macroeconomic Stability Variables: Dynamic Interactions and Feedback Effects. J. Econ. Financ. 2020, 44, 655–669. [Google Scholar] [CrossRef]
- Kiley, M.T. What Macroeconomic Conditions Lead Financial Crises? J. Int. Money Financ. 2021, 111, 102316. [Google Scholar] [CrossRef]
- Ehigiamusoe, K.U.; Samsurijan, M.S. What Matters for Finance-growth Nexus? A Critical Survey of Macroeconomic Stability, Institutions, Financial and Economic Development. Int. J. Fin. Econ. 2021, 26, 5302–5320. [Google Scholar] [CrossRef]
- Litwin, H.; Meir, A. Financial Worry among Older People: Who Worries and Why? J. Aging Stud. 2013, 27, 113–120. [Google Scholar] [CrossRef]
- Kadoya, Y.; Khan, M.S.R. Can Financial Literacy Reduce Anxiety about Life in Old Age? J. Risk Res. 2018, 21, 1533–1550. [Google Scholar] [CrossRef]
Component | Factor Loading | Communality |
---|---|---|
Credit-financed household consumption | 0.505 | 0.714 |
BNPL service penetration | 0.487 | 0.678 |
Digital default rate | 0.511 | 0.722 |
E-commerce financial complaints | 0.496 | 0.701 |
Eigenvalue (PC1) | 2.85 | |
Variance explained (PC1) | 71.3% | |
KMO statistic | 0.768 | |
Bartlett’s test | 138.2 *** |
Variable | Mean | Standard Deviation | Minimum Value | Maximum Value |
---|---|---|---|---|
0.423 | 0.128 | 0.191 | 0.788 | |
74.612 | 8.451 | 55.230 | 92.610 | |
10.346 | 0.455 | 9.145 | 11.462 | |
79.452 | 9.624 | 53.800 | 96.700 | |
87.651 | 7.524 | 61.200 | 99.800 | |
68.723 | 12.245 | 34.500 | 94.700 | |
6.425 | 2.342 | 2.300 | 15.700 | |
18.264 | 4.715 | 8.920 | 28.600 |
Variable | ||||||||
---|---|---|---|---|---|---|---|---|
1.000 | ||||||||
−0.612 *** | 1.000 | |||||||
−0.436 ** | 0.245 *** | 1.000 | ||||||
−0.591 *** | 0.287 * | 0.211 ** | 1.000 | |||||
−0.367 *** | 0.278 *** | 0.332 * | 0.321 *** | 1.000 | ||||
−0.554 *** | 0.259 ** | 0.298 * | 0.284 ** | 0.262 * | 1.000 | |||
0.528 ** | −0.164 ** | −0.256 ** | −0.232 *** | −0.194 ** | −0.157 ** | 1.000 | ||
0.486 * | −0.143 ** | 0.122 ** | −0.103 * | 0.091 * | 0.134 ** | 0.105 * | 1.000 |
Variable | Coefficient | t-Statistics |
---|---|---|
−0.325 *** | −6.437 | |
−0.192 *** | −3.845 | |
−0.284 *** | −4.512 | |
−0.161 *** | −3.164 | |
−0.174 * | −1.832 | |
0.236 *** | 4.227 | |
0.125 ** | 2.119 | |
3.845 * | 1.736 | |
country fixed effects | Yes | |
year fixed effects | Yes | |
0.682 | ||
F-statistics | 46.837 *** |
Variable | Method 1: AI Transparency | Method 2: System–GMM |
---|---|---|
0.431 *** (5.829) | ||
−0.216 *** (−4.217) | ||
−0.287 *** (−5.312) | ||
Yes | Yes | |
3.519 * (1.647) | 2.738 *** (4.563) | |
country fixed effects | Yes | |
year fixed effects | Yes | Yes |
AR(1) test (p-value) | 0.012 | |
AR(2) test (p-value) | 0.457 | |
Hansen test (p-value) | 0.334 | |
0.649 | ||
41.263 *** | 328.571 *** |
Variable | Coefficient | t-Statistics |
---|---|---|
−0.319 *** | −6.128 | |
0.014 | 0.547 | |
−0.006 | −0.334 | |
yes | ||
3.791 * | 1.745 | |
country fixed effects | yes | |
year fixed effects | yes | |
0.679 | ||
F-statistics | 43.582 *** |
Variable | Coefficient | t-Statistics |
---|---|---|
−0.248 *** | −4.915 | |
−0.231 *** | −4.236 | |
−0.162 ** | −2.174 | |
Yes | ||
3.271 * | 1.832 | |
country fixed effects | Yes | |
year fixed effects | Yes | |
0.705 | ||
F-statistics | 44.921 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teng, Z.; Xia, H.; He, Y. Algorithmic Fairness and Digital Financial Stress: Evidence from AI-Driven E-Commerce Platforms in OECD Economies. J. Theor. Appl. Electron. Commer. Res. 2025, 20, 213. https://doi.org/10.3390/jtaer20030213
Teng Z, Xia H, He Y. Algorithmic Fairness and Digital Financial Stress: Evidence from AI-Driven E-Commerce Platforms in OECD Economies. Journal of Theoretical and Applied Electronic Commerce Research. 2025; 20(3):213. https://doi.org/10.3390/jtaer20030213
Chicago/Turabian StyleTeng, Zhuoqi, Han Xia, and Yugang He. 2025. "Algorithmic Fairness and Digital Financial Stress: Evidence from AI-Driven E-Commerce Platforms in OECD Economies" Journal of Theoretical and Applied Electronic Commerce Research 20, no. 3: 213. https://doi.org/10.3390/jtaer20030213
APA StyleTeng, Z., Xia, H., & He, Y. (2025). Algorithmic Fairness and Digital Financial Stress: Evidence from AI-Driven E-Commerce Platforms in OECD Economies. Journal of Theoretical and Applied Electronic Commerce Research, 20(3), 213. https://doi.org/10.3390/jtaer20030213