Exploring User Retention in WeChat E-Commerce for SME Retailers: Perspective of Perceived Quality and Privacy Calculus
Abstract
1. Introduction
2. Theoretical Background
2.1. E-Commerce for SMEs
2.2. Perceived Quality
2.3. Privacy Calculus
2.4. Expectation-Confirmation Model
3. Hypothesis Development
3.1. Information Quality and Service Quality
3.2. Privacy Concerns and Perceived Benefits
3.3. ECM and Continuance Intention in WeChat E-Commerce
4. Methodology
4.1. Measurements
4.2. Data Collection and Sampling
5. Data Analysis and Results
5.1. Measurement Model
5.2. Structural Model
5.3. Common Method Variance
6. Discussion
7. Conclusions
7.1. Theoretical Implications
7.2. Practical Implications
7.3. Limitations and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Forghani, E.; Sheikh, R.; Hosseini, S.M.H.; Sana, S.S. The impact of digital marketing strategies on customer’s buying behavior in online shopping using the rough set theory. Int. J. Syst. Assur. Eng. Manag. 2022, 13, 625–640. [Google Scholar] [CrossRef]
- Ocloo, C.E.; Xuhua, H.; Akaba, S.; Shi, J.; Worwui-Brown, D.K. The determinant factors of business-to-business (B2B) E-commerce adoption in small- and medium-sized manufacturing enterprises. J. Glob. Inf. Technol. Manag. 2020, 23, 191–216. [Google Scholar] [CrossRef]
- Rosario, A.; Raimundo, R. Consumer marketing strategy and e-commerce in the last decade: A literature review. J. Theor. Appl. Electron. Commer. Res. 2021, 16, 3003–3024. [Google Scholar] [CrossRef]
- Khan, T.; Badjie, F. Islamic Blended Finance for Circular Economy Impactful Smes to Achieve SDGs. Singap. Econ. Rev. 2022, 67, 219–244. [Google Scholar] [CrossRef]
- Ramayah, T.; Ling, N.S.; Taghizadeh, S.K.; Rahman, S.A. Factors influencing SMEs website continuance intention in Malaysia. Telemat. Inform. 2016, 33, 150–164. [Google Scholar] [CrossRef]
- Türkeș, M.C. Driving success: Unveiling the synergy of e-marketing, sustainability, and technology orientation in online SME. J. Theor. Appl. Electron. Commer. Res. 2024, 19, 1411–1441. [Google Scholar] [CrossRef]
- Costa, P.; Rodrigues, H. The ever-changing business of e-commerce-net benefits while designing a new platform for small companies. Rev. Manag. Sci. 2023, 18, 2507–2545. [Google Scholar] [CrossRef]
- Troise, C.; Corvello, V.; Ghobadian, A.; O’Regan, N. How can SMEs successfully navigate VUCA environment: The role of agility in the digital transformation era. Technol. Forecast. Soc. Change 2022, 174, 121227. [Google Scholar] [CrossRef]
- Ballerini, J.; Herhausen, D.; Ferraris, A. How commitment and platform adoption drive the e-commerce performance of SMEs: A mixed-method inquiry into e-commerce affordances. Int. J. Inf. Manag. 2023, 72, 102649. [Google Scholar] [CrossRef]
- Di Fatta, D.; Patton, D.; Viglia, G. The determinants of conversion rates in SME e-commerce websites. J. Retail. Consum. Serv. 2018, 41, 161–168. [Google Scholar] [CrossRef]
- Gvili, Y.; Levy, S. I Share, Therefore I Trust: A moderated mediation model of the influence of eWOM engagement on social commerce. J. Business Research 2023, 166, 114131. [Google Scholar] [CrossRef]
- Elshaer, I.A.; Alrawad, M.; Lutfi, A.; Azazz, A.M.S. Social commerce and buying intention post COVID-19: Evidence from a hybrid approach based on SEM and fsQCA. J. Retail. Consum. Serv. 2024, 76, 103548. [Google Scholar] [CrossRef]
- Lien, C.H.; Cao, Y.; Zhou, X. Service quality, satisfaction, stickiness, and usage intentions: An exploratory evaluation in the context of WeChat services. Comput. Hum. Behav. 2017, 68, 403–410. [Google Scholar] [CrossRef]
- Hong, W.; Chan, F.K.Y.; Thong, J.Y.L. Drivers and Inhibitors of Internet Privacy Concern: A Multidimensional Development Theory Perspective. J. Bus. Ethics 2021, 168, 539–564. [Google Scholar] [CrossRef]
- Technode. WeChat’s Impact: A Report on WeChat Platform Data. 2015. Available online: http://technode.com/2015/02/10/wechat-impact-report/ (accessed on 5 March 2024).
- Hong, Y.; Hu, J.T.; Zhao, Y.X. Would you go invisible on social media? An empirical study on the antecedents of users’ lurking behavior. Technol. Forecast. Soc. Change 2023, 187, 122237. [Google Scholar] [CrossRef]
- Setiawan, D.; Adhariani, D.; Harymawan, I.; Widodo, M. E-commerce and micro and small industries performance: The role of firm size as a moderator. J. Open Innov. Technol. Mark. Complex. 2023, 9, 100142. [Google Scholar]
- Vu, U.; Tolstoy, D. Examining the complementary roles of market-driven and market-driving orientations in the geographical diversification strategies of e-commerce SMEs. J. Bus. Res. 2025, 194, 115375. [Google Scholar] [CrossRef]
- Assaker, G.; O’Connor, P.; El-Haddad, R. Examining an integrated model of green image, perceived quality, satisfaction, trust, and loyalty in upscale hotels. J. Hosp. Mark. Manag. 2020, 29, 934–955. [Google Scholar] [CrossRef]
- Hossain, M.U.; Halbusi, H.A.; Thurasamy, R.; Hock, R.L.T.; Aljaberi, M.A.; Hasan, N.; Hamid, M. The effects of service quality, perceived value and trust in home delivery service personnel on customer satisfaction: Evidence from a developing country. J. Retail. Consum. Serv. 2021, 63, 102721. [Google Scholar]
- Díaz, E.R.; Rosas, J.F.M.; Encomienda, F.J.B. Impact of heuristic–systematic cues on the purchase intention of the electronic commerce consumer through the perception of product quality. J. Retail. Consum. Serv. 2024, 81, 103980. [Google Scholar] [CrossRef]
- Kumar, V.; Ayodeji, O.G. E-retail factors for customer activation and retention: An empirical study from Indian e-commerce customers. J. Retail. Consum. Serv. 2021, 59, 102399. [Google Scholar] [CrossRef]
- Nisar, T.M.; Prabhakar, G. What factors determine e-satisfaction and consumer spending in e-commerce retailing? J. Retail. Consum. Serv. 2016, 39, 135–144. [Google Scholar] [CrossRef]
- Dienlin, T.; Metzger, M.J. An Extended Privacy Calculus Model for SNSs: Analyzing self-disclosure and self-withdrawal in a representative U.S. sample. J. Comput. Mediat. Commun. 2017, 21, 368–383. [Google Scholar] [CrossRef]
- Venkatesh, V.; Hoehle, H.; Aloysius, J.A.; Nikkhah, H.R. Being at the cutting edge of online shopping: Role of recommendations and discounts on privacy perceptions. Comput. Hum. Behav. 2021, 121, 106785. [Google Scholar] [CrossRef]
- Rahi, S.; Mansour, M.M.O.; Alharafsheh, M.; Alghizzawi, M. The post-adoption behavior of internet banking users through the eyes of self-determination theory and expectation confirmation model. J. Enterp. Inf. Manag. 2021, 34, 345–367. [Google Scholar] [CrossRef]
- Bhattacherjee, A. Understanding information systems continuance: An expectation-confirmation model. MIS Q. 2001, 25, 351–370. [Google Scholar] [CrossRef]
- Huang, Y.-M. Examining students’ continued use of desktop services: Perspectives from expectation-confirmation and social influence. Comput. Hum. Behav. 2019, 96, 23–31. [Google Scholar] [CrossRef]
- Mamun, M.R.A.; Senn, W.D.; Peak, D.A.; Prybutok, V.R.; Torres, R.A. Emotional Satisfaction and IS Continuance Behavior: Reshaping the Expectation-Confirmation Model. Int. J. Hum. Comput. Interact. 2020, 36, 1437–1446. [Google Scholar] [CrossRef]
- Limayem, M.; Hirt, S.G.; Cheung, C.M.K. How habit limits the predictive power of intention: The case of information systems continuance. MIS Q. 2007, 31, 705–737. [Google Scholar] [CrossRef]
- Chen, S.C.; Yen, D.C.; Hwang, M.I. Factors influencing the continuance intention to use Web 2.0: An empirical study. Comput. Hum. Behav. 2012, 28, 933–941. [Google Scholar] [CrossRef]
- Wang, M.-M.; Wang, J.-J. Understanding Solvers’ Continuance Intention in Crowdsourcing Contest Platform: An Extension of Expectation-Confirmation Model. J. Theor. Appl. Electron. Commer. Res. 2019, 14, 17–33. [Google Scholar] [CrossRef]
- Asare, S.D.; Gopolang, B.; Mogotlhwane, O. Challenges facing SMEs in the adoption of ICT in B2B and B2C e-commerce: A comparative case study of Botswana and Ghana. Int. J. Commer. Manag. 2012, 22, 272–285. [Google Scholar] [CrossRef]
- Gouveia, F.D.; São Mamede, H. Digital transformation for SMEs in the retail industry. Procedia Comput. Sci. 2022, 204, 671–681. [Google Scholar] [CrossRef]
- Minatogawa, V.; Franco, M.; Durán, O.; Quadros, R.; Holgado, M.; Batocchio, A. Carving out new business models in a small company through contextual ambidexterity: The case of a sustainable company. Sustainability 2020, 12, 2337. [Google Scholar] [CrossRef]
- Cheng, T.; Kim, S.; Koh, K. Life Satisfaction Changes qnd Adaptation in the Covid-19 Pandemic: Evidence from Singapore. Singap. Econ. Rev. 2022, 69, 1–34. [Google Scholar] [CrossRef]
- Xu, X.-Y.; Jia, Q.-D. A new exploration of signaling theory in social commerce facilitated cross-border retailing: A four-stage approach. Inf. Manag. 2025, 62, 104154. [Google Scholar] [CrossRef]
- Hong, Y.; Hu, J.T.; Chen, M.Y. Motives and antecedents affecting green purchase intention: Implications for green economic recovery. Econ. Anal. Policy 2023, 77, 523–538. [Google Scholar] [CrossRef]
- Choshin, M.; Ghaffari, A. An investigation of the impact of effective factors on the success of e-commerce in small-and medium-sized companies. Comput. Hum. Behav. 2017, 66, 67–74. [Google Scholar] [CrossRef]
- Gupta, P.; Zhang, F.; Chauhan, S.; Goyal, S.; Bhardwaj, A.K.; Gajpal, Y. Understanding small and medium enterprises’ behavioral intention to adopt social commerce: A perceived value perspective. J. Enterp. Inf. Manag. 2024, 37, 959–992. [Google Scholar] [CrossRef]
- Han, B.; Li, P.; Tan, X. The effects of quality perception and multisensory perception on purchase intention when consumers shop online. Asia Pac. J. Mark. Logist. 2025, 37, 800–817. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, Q.; Lee, M.K.; Qi, G.; Liu, Y. Consumers’ usage of errand delivery services: The effects of service quality and consumer perception. J. Retail. Consum. Serv. 2024, 81, 104048. [Google Scholar] [CrossRef]
- Snoj, B.; Korda, A.P.; Mumel, D. The relationships among perceived quality, perceived risk and perceived product value. The J. Prod. Brand Manag. 2004, 13, 156–167. [Google Scholar] [CrossRef]
- Nikhashemi, S.R.; Valaei, N.; Tarofder, A.K. Does brand personality and perceived product quality play a major role in mobile phone consumers’ switching behavior? Glob. Bus. Rev. 2017, 18, 108–127. [Google Scholar] [CrossRef]
- Lopes, E.L.; Freire, O.B.d.L.; Lopes, E.H. Competing scales for measuring perceived quality in the electronic retail industry: A comparison between E-S-Qual and E-TailQ. Electron. Commer. Res. Appl. 2019, 34, 100824. [Google Scholar] [CrossRef]
- Xu, J.-J.D.; Benbasat, I.; Cenfetelli, R.T. Integrating service quality with system and information quality: An empirical test in the e-service context. MIS Q. 2013, 37, 777–794. [Google Scholar] [CrossRef]
- Chen, Y.; Lu, Y.; Wang, B.; Pan, Z. How do product recommendations affect impulse buying? An empirical study on WeChat social commerce. Inf. Manag. 2019, 56, 236–248. [Google Scholar] [CrossRef]
- Shafieizadeh, K.; Alotaibi, S.; Tao, C.W. Information processing of food safety messages: What really matters for restaurant customers? Int. J. Contemp. Hosp. Manag. 2023, 35, 3638–3661. [Google Scholar] [CrossRef]
- Wong, I.A.; Huang, J.; Lin, Z.C.; Jiao, H. Smart dining, smart restaurant, and smart service quality (SSQ). Int. J. Contemp. Hosp. Manag. 2022, 34, 2272–2297. [Google Scholar] [CrossRef]
- Kumari, N.; Biswas, A. Does M-payment service quality and perceived value co-creation participation magnify M-payment continuance usage intention? Moderation of usefulness and severity. Int. J. Bank Mark. 2023, 41, 1330–1359. [Google Scholar] [CrossRef]
- Yang, Z.; Vizcaíno, F.V.; Jin, M. Enhancing patient wellbeing through telemedicine services: The impact of cognitive and affective service quality ratings and physicians’ long-term orientation. Int. J. Inf. Manag. 2025, 82, 102873. [Google Scholar] [CrossRef]
- Kang, J.-W.; Namkung, Y. The role of service quality attributes and perceived value in US consumers’ impulsive buying intentions for fresh food e-commerce. J. Theor. Appl. Electron. Commer. Res. 2024, 19, 1893–1915. [Google Scholar] [CrossRef]
- Scarpi, D.; Pizzi, G.; Matta, S. Digital technologies and privacy: State of the art and research directions. Psychol. Mark. 2022, 39, 1687–1697. [Google Scholar] [CrossRef]
- Cloarec, J.; Meyer-Waarden, L.; Munzel, A. Transformative privacy calculus: Conceptualizing the personalization-privacy paradox on social media. Psychol. Mark. 2024, 41, 1574–1596. [Google Scholar] [CrossRef]
- He, J.; Liang, X.; Xue, J. Unraveling the influential mechanisms of smart interactions on stickiness intention: A privacy calculus perspective. J. Theor. Appl. Electron. Commer. Res. 2024, 19, 2582–2604. [Google Scholar] [CrossRef]
- Culnan, M.J.; Bies, R.J. Consumer privacy: Balancing economic and justice considerations. J. Soc. Issues 2003, 59, 323–342. [Google Scholar] [CrossRef]
- Guo, J.; Li, N.; Wu, Y.; Cui, T. Examining help requests on social networking sites: Integrating privacy perception and privacy calculus perspectives. Electron. Commer. Res. Appl. 2020, 39, 100828. [Google Scholar] [CrossRef]
- Sun, S.; Zhang, J.; Zhu, Y.; Jiang, M.; Chen, S. Exploring users’ willingness to disclose personal information in online healthcare communities: The role of satisfaction. Technol. Forecast. Soc. Change 2022, 178, 121589. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Y.; Mou, J. Understanding information disclosures and privacy sensitivity on short-form video platforms: An empirical investigation. J. Retail. Consum. Serv. 2023, 72, 103276. [Google Scholar] [CrossRef]
- Gouthier, M.H.J.; Nennstiel, C.; Kern, N.; Wendel, L. The more the better? Data disclosure between the conflicting priorities of privacy concerns, information sensitivity and personalization in e-commerce. J. Bus. Res. 2022, 148, 174–189. [Google Scholar] [CrossRef]
- Jozani, M.; Ayaburi, E.; Ko, M.; Choo, K.-K.R. Privacy concerns and benefits of engagement with social media-enabled apps: A privacy calculus perspective. Comput. Hum. Behav. 2020, 107, 106260. [Google Scholar] [CrossRef]
- Maseeh, H.I.; Jebarajakirthy, C.; Pentecost, R.; Arli, D.; Weaven, S.; Ashaduzzaman, M. Privacy concerns in e-commerce: A multilevel meta-analysis. Psychol. Mark. 2021, 38, 1779–1798. [Google Scholar] [CrossRef]
- Ambalov, I.A. A meta-analysis of IT continuance: An evaluation of the expectation-confirmation model. Telemat. Inform. 2018, 35, 1561–1571. [Google Scholar] [CrossRef]
- Oliver, R.L. A cognitive model of the antecedents and consequences of satisfaction decisions. J. Mark. Res. 1980, 17, 460–469. [Google Scholar] [CrossRef]
- Hsu, C.-L.; Lin, J.C.-C. What drives purchase intention for paid mobile apps?—An expectation confirmation model with perceived value. Electronic Commer. Res. Appl. 2015, 14, 46–57. [Google Scholar]
- Mouakket, S. Factors influencing continuance intention to use social network sites: The Facebook case. Comput. Hum. Behav. 2015, 53, 102–110. [Google Scholar] [CrossRef]
- Huang, Y.-M. The factors that predispose students to continuously use cloud services: Social and technological perspectives. Comput. Educ. 2016, 97, 86–96. [Google Scholar] [CrossRef]
- Khan, M.I.; Loh, J.M.I.; Hossain, A.; Talukder, M.J.H. Cynicism as strength: Privacy cynicism, satisfaction and trust among social media users. Comput. Hum. Behav. 2022, 128, 107638. [Google Scholar] [CrossRef]
- Cheng, X.; Bao, Y.; Yang, B.; Chen, S.; Zuo, Y.; Siponen, M. Investigating students’ satisfaction with online collaborative learning during the COVID-19 period: An expectation-confirmation model. Group Decis. Negot. 2023, 32, 749–778. [Google Scholar] [CrossRef]
- Nascimento, B.; Oliveira, T.; Tam, C. Wearable technology: What explains continuance intention in smartwatches? J. Retail. Consum. Serv. 2018, 43, 157–169. [Google Scholar] [CrossRef]
- Gupta, A.; Dhiman, N.; Yousaf, A.; Arora, N. Social comparison and continuance intention of smart fitness wearables: An extended expectation confirmation theory perspective. Behav. Inf. Technol. 2021, 40, 1341–1354. [Google Scholar] [CrossRef]
- Wu, T.; Fan, B.; Cai, X.; Li, R.; Wang, Q.; Deng, Z. Community health workers’ continuance of mobile health applications: An extended expectation confirmation model. Inf. Manag. 2024, 61, 104008. [Google Scholar] [CrossRef]
- Yu, W.-J.; Hung, S.-Y.; Yu, A.P.-I.; Hung, Y.-L. Understanding consumers’ continuance intention of social shopping and social media participation: The perspective of friends on social media. Inf. Manag. 2024, 61, 103808. [Google Scholar] [CrossRef]
- Wu, I.-L.; Chiu, M.-L.; Chen, K.-W. Defining the determinants of online impulse buying through a shopping process of integrating perceived risk, expectation-confirmation model, and flow theory issues. Int. J. Inf. Manag. 2020, 52, 102099. [Google Scholar] [CrossRef]
- Tseng, F.-C.; Huang, T.-L.; Cheng, T.C.E.; Teng, C.-I. Evaluating e-commerce website qualities: Personality traits as triggers. Internet Res. 2023, 33, 741–773. [Google Scholar] [CrossRef]
- Ahn, J.; Sura, S. The Effect of Information Quality on Social Networking Site (SNS)-Based Commerce: From the Perspective of Malaysian SNS Users. J. Organ. End User Comput. 2020, 32, 1–18. [Google Scholar] [CrossRef]
- Yi, Y.M.; Davis, M.H.; Lee, T.S. Untangling the antecedents of initial trust in Web-based health information: The roles of argument quality, source expertise, and user perceptions of information quality and risk. Decis. Support Syst. 2013, 55, 284–295. [Google Scholar] [CrossRef]
- Dağhan, G.; Akkoyunlu, B. Modeling the continuance usage intention of online learning environments. Comput. Hum. Behav. 2016, 60, 198–211. [Google Scholar] [CrossRef]
- Zeithaml, V.A.; Parasuraman, A.; Malhotra, A. Service quality delivery through websites: A critical review of extant knowledge. J. Acad. Mark. Sci. 2002, 30, 362–375. [Google Scholar] [CrossRef]
- Omar, S.; Mohsen, K.; Tsimonis, G.; Oozeerally, A.; Hsu, J.-H. M-commerce: The nexus between mobile shopping service quality and loyalty. J. Retail. Consum. Serv. 2021, 60, 102468. [Google Scholar] [CrossRef]
- Turel, O.; Yuan, Y.; Connelly, C.E. In Justice We Trust: Predicting User Acceptance of E-Customer Services. J. Manag. Inf. Syst. 2014, 24, 123–151. [Google Scholar] [CrossRef]
- Cai, R.; Qu, H. Customers’ perceived justice, emotions, direct and indirect reactions to service recovery: Moderating effects of recovery efforts. J. Hosp. Mark. Manag. 2017, 27, 323–345. [Google Scholar] [CrossRef]
- Park, E. User acceptance of smart wearable devices: An expectation-confirmation model approach. Telemat. Inform. 2020, 47, 101364. [Google Scholar] [CrossRef]
- Li, Y.; Shang, H. Service quality, perceived value, and citizens’ continuous-use intention regarding e-government: Empirical evidence from China. Inf. Manag. 2020, 57, 103197. [Google Scholar] [CrossRef]
- Libaque-Sáenz, C.F.; Wong, S.F.; Chang, Y.; Bravo, E.R. The effect of fair information practices and data collection methods on privacy-related behaviors: A study of mobile apps. Inf. Manag. 2021, 58, 103284. [Google Scholar] [CrossRef]
- Luo, J.; Ba, S.; Zhang, H. The effectiveness of online shopping characteristics and well-designed websites on satisfaction. MIS Q. 2012, 36, 1131–1144. [Google Scholar] [CrossRef]
- McLean, G.; Osei-Frimpong, K. Hey Alexa… examine the variables influencing the use of artificial intelligent in-home voice assistants. Comput. Hum. Behav. 2019, 99, 28–37. [Google Scholar] [CrossRef]
- Ray, A.; Bala, P.K. User generated content for exploring factors affecting intention to use travel and food delivery services. Int. J. Hosp. Manag. 2021, 92, 102730. [Google Scholar] [CrossRef]
- Pillai, S.G.; Kim, W.G.; Haldorai, K.; Kim, H.-S. Online food delivery services and consumers’ purchase intention: Integration of theory of planned behavior, theory of perceived risk, and the elaboration likelihood model. Int. J. Hosp. Manag. 2022, 105, 103275. [Google Scholar] [CrossRef]
- Hsu, C.L.; Lin, J.C.C. Understanding continuance intention to use online to offline (O2O) apps. Electron. Mark. 2020, 30, 883–897. [Google Scholar] [CrossRef]
- Choi, H.; Park, J.; Jung, Y. The role of privacy fatigue in online privacy behavior. Comput. Hum. Behav. 2018, 81, 42–51. [Google Scholar] [CrossRef]
- Min, J.; Kim, B. How are people enticed to disclose personal information despite privacy concerns in social network sites? The calculus between benefit and cost. J. Assoc. Inf. Sci. Technol. 2015, 66, 839–857. [Google Scholar] [CrossRef]
- Lankton, N.K.; McKnight, D.H.; Tripp, J.F. Facebook privacy management strategies: A cluster analysis of user privacy behaviors. Comput. Hum. Behav. 2017, 76, 149–163. [Google Scholar] [CrossRef]
- Zhu, Y.; Wei, Y.; Zhou, Z.; Jiang, H. Consumers’ continuous use intention of O2O E-commerce platform on community: A value co-creation perspective. Sustainability 2022, 14, 1666. [Google Scholar] [CrossRef]
- Hsiao, C.-H. The effects of post-adoption beliefs on the expectation–confirmation model in an electronics retail setting. Total Qual. Manag. Bus. Excell. 2016, 29, 866–880. [Google Scholar] [CrossRef]
- Bonsón Ponte, E.; Carvajal-Trujillo, E.; Escobar-Rodríguez, T. Influence of trust and perceived value on the intention to purchase travel online: Integrating the effects of assurance on trust antecedents. Tour. Manag. 2015, 47, 286–302. [Google Scholar] [CrossRef]
- Tsay, C.H.H.; Lin, T.C.; Yoon, J.; Huang, C.C. Knowledge withholding intentions in teams: The roles of normative conformity, affective bonding, rational choice and social cognition. Decis. Support Syst. 2014, 67, 53–65. [Google Scholar] [CrossRef]
- Zhao, L.; Lu, Y.; Gupta, S. Disclosure intention of location-related information in location-based social network services. Int. J. Electron. Commer. 2014, 16, 53–90. [Google Scholar] [CrossRef]
- Nemec Zlatolas, L.; Welzer, T.; Hölbl, M.; Heričko, M.; Kamišalić, A. A model of perception of privacy, trust, and self-disclosure on online social networks. Entropy 2019, 21, 772. [Google Scholar] [CrossRef]
- Lee, M. Factors influencing the adoption of Internet banking: An integration of TAM and TPB with perceived risk and perceived benefit. Electron. Commer. Res. Appl. 2009, 8, 130–141. [Google Scholar] [CrossRef]
- Li, Y.; Wang, X.; Lin, X.; Hajli, M. Seeking and sharing health information on social media: A net valence model and cross-cultural comparison. Technol. Forecast. Soc. Change 2018, 126, 28–40. [Google Scholar] [CrossRef]
- Chea, S.; Luo, M.M. Post-adoption behaviors of e-service customers: The interplay of cognition and emotion. Int. J. Electron. Commer. 2008, 12, 29–56. [Google Scholar] [CrossRef]
- Gefen, D.; Rigdon, E.E.; Straub, D. Editor’s comments: An update and extension to SEM guidelines for administrative and social science research. MIS Q. 2011, 35, iii–xiv. [Google Scholar] [CrossRef]
- Hakan, C. Customer online shopping anxiety within the unified theory of acceptance and use technology (UTAUT) framework. Asia Pac. J. Mark. Logist. 2016, 28, 278–307. [Google Scholar]
- Fornell, C.; Larcker, D.F. Evaluating structural equation models with unobservable variables and measurement error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E. Multivariate Data Analysis, 8th ed.; Pearson: London, UK, 2018. [Google Scholar]
- Kline, R.B. Principles and Practice of Structural Equation Modeling, 4th ed.; Guilford Press: New York, NY, USA, 2015. [Google Scholar]
- Hair, J.F.; Hult, G.T.M.; Ringle, C.M.; Sarstedt, M. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), 2nd ed.; Sage Publications: Washington, DC, USA, 2016. [Google Scholar]
- Henseler, J.; Ringle, C.M.; Sarstedt, M. A new criterion for assessing discriminant validity in variance-based structural equation modeling. J. Acad. Mark. Sci. 2015, 43, 115–135. [Google Scholar] [CrossRef]
- Chin, W.W. The partial least squares approach to structural equation modeling. In Modern Methods for Business Research; Lawrence Erlbaum Associates Publishers: Mahwah, NJ, USA, 1998; pp. 295–336. [Google Scholar]
- Benitez, J.; Henseler, J.; Castillo, A.; Schuberth, F. How to perform and report an impactful analysis using partial least squares: Guidelines for confirmatory and explanatory IS research. Inf. Manag. 2019, 56, 103168. [Google Scholar] [CrossRef]
- Hsieh, S.H.; Lee, C.T. Traces of mobility: Examining location disclosure on social networks with mobile location tagging. Telemat. Inform. 2020, 49, 101366. [Google Scholar] [CrossRef]
- Chen, L.; Chin, F.G.; Sun, Y.; Amran, R. Integrating guanxi into technology acceptance: An empirical investigation of WeChat. Telemat. Inform. 2017, 34, 1125–1142. [Google Scholar]
- Hazen, B.T.; Cegielski, C.; Hanna, J.B. Diffusion of green supply chain management: Examining perceived quality of green reverse logistics. Int. J. Logist. Manag. 2011, 22, 373–389. [Google Scholar] [CrossRef]
- Lindell, M.K.; Whitney, D.J. Accounting for common method bias in cross-sectional research designs. J. Appl. Psychol. 2001, 86, 114–121. [Google Scholar] [CrossRef]
- Bugshan, H.; Attar, R.W. Social commerce information sharing and their impact on consumers. Technol. Forecast. Soc. Change 2020, 153, 119875. [Google Scholar] [CrossRef]
- Zhang, M.; Wei, Z.; Liu, Y. The impact of review sentiment complexity on perceived helpfulness: An information overload perspective. J. Res. Interact. Mark. 2024; ahead-of-print. [Google Scholar] [CrossRef]
- Parker, O.; Gong, K.; Mui, R.; Titus, V.; Du, J.; Kwarteng, G. Order matters: How altering the sequence of performance events shapes perceived quality formation. J. Bus. Res. 2021, 126, 48–63. [Google Scholar] [CrossRef]
Characteristics | Frequency | Percent (%) |
---|---|---|
1. Gender | ||
Male | 207 | 29.7% |
Female | 489 | 70.3% |
2. Age | ||
Under 18 | 7 | 1.0% |
18–25 | 255 | 36.6% |
26–33 | 296 | 42.5% |
34–41 | 90 | 12.9% |
Over 41 | 48 | 6.9% |
3. Education level | ||
Certificate or below | 14 | 2.0% |
High school | 45 | 6.5% |
Undergraduate degree | 565 | 81.2% |
Master | 64 | 9.2% |
Doctor degree | 8 | 1.1% |
4. Daily time spent on WeChat | ||
Under 2 h | 68 | 9.8% |
2 h–3 h | 159 | 22.8% |
3 h–4 h | 243 | 34.9% |
4 h–5 h | 139 | 20.0% |
5 h–6 h | 71 | 10.2% |
Over 6 h | 16 | 2.3% |
5. Frequency of using WeChat | ||
Under 4 times a day | 20 | 2.9% |
4–6 times a day | 101 | 14.5% |
7–9 times a day | 131 | 18.8% |
10–12 times a day | 141 | 20.3% |
Over 13 times a day | 303 | 43.5% |
6. Experience of using WeChat | ||
Under 2 years | 8 | 1.1% |
2–3 years | 37 | 5.3% |
3–4 years | 88 | 12.6% |
4–5 years | 100 | 14.4% |
Over 5 years | 463 | 66.5% |
7. Frequency of using WeChat e-commerce | ||
Under 2 times a day | 70 | 10.1% |
2–3 times a day | 214 | 30.7% |
4–5 times a day | 182 | 26.1% |
6–7 times a day | 79 | 11.4% |
Over 7 times a day | 151 | 21.7% |
8. Experience of using WeChat e-commerce | ||
Under 2 years | 47 | 6.8% |
2–3 years | 133 | 19.1% |
3–4 years | 155 | 22.3% |
4–5 years | 143 | 20.5% |
Over 5 years | 218 | 31.3% |
Constructs | Indicator Reliability | Consistency Reliability | Convergent Validity | |
---|---|---|---|---|
Outer Factor Loading | Cronbach’s Alpha | Composite Reliability | Average Variance Extracted (AVE) | |
Accuracy | 0.832~0.870 | 0.812 | 0.889 | 0.727 |
Completeness | 0.796~0.805 | 0.720 | 0.842 | 0.640 |
Procedural justice | 0.811~0.824 | 0.838 | 0.892 | 0.673 |
Efficiency | 0.810~0.818 | 0.746 | 0.855 | 0.663 |
Privacy concerns | 0.909~0.948 | 0.947 | 0.962 | 0.863 |
Perceived benefits | 0.809~0.829 | 0.755 | 0.860 | 0.672 |
Confirmation | 0.766~0.820 | 0.808 | 0.874 | 0.635 |
Satisfaction | 0.804~0.854 | 0.852 | 0.900 | 0.693 |
Continuance intention | 0.792~0.823 | 0.820 | 0.881 | 0.649 |
AC | CO | PJ | EF | PC | PB | CON | SAT | CI | |
---|---|---|---|---|---|---|---|---|---|
AC | 0.853 | ||||||||
CO | 0.670 | 0.800 | |||||||
PJ | 0.658 | 0.644 | 0.820 | ||||||
EF | 0.592 | 0.540 | 0.557 | 0.814 | |||||
PC | −0.213 | −0.246 | −0.207 | −0.062 | 0.929 | ||||
PB | 0.577 | 0.501 | 0.548 | 0.621 | −0.022 | 0.819 | |||
CON | 0.649 | 0.593 | 0.658 | 0.595 | −0.285 | 0.638 | 0.797 | ||
SAT | 0.671 | 0.659 | 0.708 | 0.626 | −0.229 | 0.684 | 0.734 | 0.833 | |
CI | 0.676 | 0.652 | 0.628 | 0.595 | −0.173 | 0.657 | 0.687 | 0.749 | 0.806 |
AC | CO | PJ | EF | PC | PB | CON | SAT | CI | |
---|---|---|---|---|---|---|---|---|---|
AC | |||||||||
CO | 0.876 | ||||||||
PJ | 0.798 | 0.828 | |||||||
EF | 0.761 | 0.732 | 0.702 | ||||||
PC | 0.241 | 0.298 | 0.230 | 0.074 | |||||
PB | 0.737 | 0.673 | 0.686 | 0.826 | 0.030 | ||||
CON | 0.801 | 0.776 | 0.797 | 0.765 | 0.324 | 0.816 | |||
SAT | 0.804 | 0.839 | 0.836 | 0.781 | 0.256 | 0.848 | 0.881 | ||
CI | 0.829 | 0.848 | 0.757 | 0.759 | 0.193 | 0.833 | 0.843 | 0.894 |
Hypothesis | Path | Original Sample (O) | Sample Mean (M) | Standard Deviation (STDEV) | T Statistics | Path Coefficient | Result | |
---|---|---|---|---|---|---|---|---|
H1 | H1a | AC → PC | −0.110 | −0.112 | 0.056 | 1.956 | −0.110 | Not |
H1b | AC → PB | 0.142 | 0.142 | 0.056 | 2.539 | 0.141 | Supported | |
H1c | AC → CON | 0.228 | 0.229 | 0.046 | 4.962 | 0.229 | Supported | |
H2 | H2a | CO → PC | −0.207 | −0.208 | 0.052 | 3.949 | −0.208 | Supported |
H2b | CO → PB | 0.034 | 0.034 | 0.047 | 0.730 | 0.035 | Not | |
H2c | CO → CON | 0.108 | 0.109 | 0.036 | 2.969 | 0.107 | Supported | |
H3 | H3a | PJ → PC | −0.106 | −0.107 | 0.050 | 2.109 | −0.106 | Supported |
H3b | PJ → PB | 0.088 | 0.089 | 0.059 | 1.505 | 0.089 | Not | |
H3c | PJ → CON | 0.335 | 0.335 | 0.044 | 7.610 | 0.333 | Supported | |
H4 | H4a | EF → PC | 0.172 | 0.171 | 0.055 | 3.127 | 0.172 | Supported |
H4b | EF → PB | 0.271 | 0.270 | 0.050 | 5.405 | 0.270 | Supported | |
H4c | EF → CON | 0.210 | 0.209 | 0.040 | 5.200 | 0.211 | Supported | |
H5 | H5a | PB → SAT | 0.363 | 0.361 | 0.039 | 9.215 | 0.364 | Supported |
H5b | PB → CI | 0.286 | 0.285 | 0.038 | 7.493 | 0.286 | Supported | |
H6 | H6a | PC → PB | 0.154 | 0.150 | 0.029 | 5.390 | 0.154 | Supported |
H6b | PC → CI | −0.052 | −0.052 | 0.026 | 2.014 | −0.051 | Supported | |
H7 | H7a | CON → PB | 0.348 | 0.345 | 0.054 | 6.396 | 0.349 | Supported |
H7b | CON → SAT | 0.502 | 0.504 | 0.033 | 15.078 | 0.502 | Supported | |
H8 | SAT → CI | 0.541 | 0.541 | 0.038 | 14.322 | 0.541 | Supported |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, Y.; Wan, M.; Yao, W. Exploring User Retention in WeChat E-Commerce for SME Retailers: Perspective of Perceived Quality and Privacy Calculus. J. Theor. Appl. Electron. Commer. Res. 2025, 20, 151. https://doi.org/10.3390/jtaer20030151
Hong Y, Wan M, Yao W. Exploring User Retention in WeChat E-Commerce for SME Retailers: Perspective of Perceived Quality and Privacy Calculus. Journal of Theoretical and Applied Electronic Commerce Research. 2025; 20(3):151. https://doi.org/10.3390/jtaer20030151
Chicago/Turabian StyleHong, Ying, Meng Wan, and Wenxin Yao. 2025. "Exploring User Retention in WeChat E-Commerce for SME Retailers: Perspective of Perceived Quality and Privacy Calculus" Journal of Theoretical and Applied Electronic Commerce Research 20, no. 3: 151. https://doi.org/10.3390/jtaer20030151
APA StyleHong, Y., Wan, M., & Yao, W. (2025). Exploring User Retention in WeChat E-Commerce for SME Retailers: Perspective of Perceived Quality and Privacy Calculus. Journal of Theoretical and Applied Electronic Commerce Research, 20(3), 151. https://doi.org/10.3390/jtaer20030151