Content Characteristics and Customer Purchase Behaviors in Nonfungible Token Digital Artwork Trading
Abstract
:1. Introduction
- RQ1:
- What are the key content characteristics of NFT digital artworks that shape perceived value and purchasing behavior?
- RQ2:
- Does perceived value mediate the relationship between the content characteristics of and purchasing behavior toward NFT digital artworks?
- RQ3:
- What configurations of content characteristics lead to high purchasing behavior for NFT digital artworks?
2. Literature Review and Hypotheses
2.1. Content Characteristics of NFT Digital Artworks
2.2. Theoretical Framework
2.2.1. Purchase Behavior
2.2.2. Perceived Value
2.3. Hypotheses
2.3.1. Uniqueness
2.3.2. Profitability
2.3.3. Prestige
2.3.4. Community Engagement
2.3.5. Collectability
2.3.6. Compatibility
2.3.7. Mediating Effect of Perceived Value
2.4. Research Model
3. Methodology
3.1. Measurement
3.2. Data Collection
- (a)
- The research motivation of this study was clearly articulated, specifically that the anonymity of participants was ensured, the collected data would be used solely for academic research, and all answers were nonunique, with no right or wrong responses;
- (b)
- The estimated time required to complete the questionnaire was communicated as 3–5 min, minimizing the burden on participants;
- (c)
- To express their gratitude for the respondents’ time and effort, the authors offered them a sum of RMB 3–5 upon completing the survey. This compensation was designed to respect the participants’ contributions without exerting undue influence, consistent with ethical research practices.
3.3. Analysis Methods
4. Analysis and Results
4.1. Reliability and Validity
4.2. Common Method Bias
4.3. Hypotheses Testing
4.4. Mediating Effect Analysis
4.5. fsQCA
4.5.1. Necessary Conditions
4.5.2. Sufficient Conditions
4.5.3. Predictive Validity and Robustness Check
5. Discussion
6. Conclusions
6.1. Theoretical Implications
6.2. Practical Implications
6.3. Limitations and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
U | PRO | PRE | CE | COL | COM | Frequency | PB | Raw Consist | PRI Consist | SYM Consist |
---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | 1 | 0 | 1 | 1 | 14 | 1 | 0.993 | 0.947 | 0.947 |
0 | 1 | 1 | 0 | 1 | 1 | 6 | 1 | 0.987 | 0.895 | 0.899 |
1 | 0 | 1 | 0 | 1 | 0 | 3 | 1 | 0.987 | 0.838 | 0.838 |
0 | 1 | 1 | 1 | 1 | 1 | 10 | 1 | 0.986 | 0.904 | 0.904 |
1 | 1 | 1 | 0 | 1 | 0 | 5 | 1 | 0.986 | 0.867 | 0.886 |
0 | 0 | 1 | 0 | 1 | 1 | 3 | 1 | 0.985 | 0.839 | 0.839 |
0 | 1 | 1 | 1 | 0 | 1 | 5 | 1 | 0.985 | 0.874 | 0.874 |
1 | 1 | 1 | 1 | 1 | 1 | 59 | 1 | 0.985 | 0.949 | 0.951 |
1 | 0 | 1 | 0 | 1 | 1 | 6 | 1 | 0.985 | 0.859 | 0.865 |
1 | 1 | 0 | 1 | 1 | 1 | 6 | 1 | 0.984 | 0.837 | 0.837 |
1 | 1 | 1 | 1 | 0 | 1 | 12 | 1 | 0.983 | 0.872 | 0.886 |
1 | 1 | 1 | 0 | 0 | 1 | 7 | 1 | 0.982 | 0.804 | 0.843 |
0 | 1 | 1 | 1 | 1 | 0 | 4 | 1 | 0.980 | 0.833 | 0.833 |
1 | 1 | 0 | 1 | 0 | 1 | 3 | 1 | 0.978 | 0.773 | 0.773 |
0 | 1 | 1 | 0 | 1 | 0 | 3 | 1 | 0.978 | 0.806 | 0.806 |
1 | 1 | 0 | 0 | 1 | 1 | 8 | 1 | 0.978 | 0.758 | 0.758 |
1 | 1 | 1 | 1 | 1 | 0 | 8 | 1 | 0.977 | 0.822 | 0.822 |
0 | 1 | 0 | 1 | 1 | 1 | 4 | 1 | 0.977 | 0.767 | 0.767 |
1 | 1 | 0 | 0 | 1 | 0 | 4 | 1 | 0.973 | 0.707 | 0.707 |
1 | 0 | 1 | 1 | 1 | 1 | 8 | 1 | 0.966 | 0.741 | 0.750 |
0 | 1 | 1 | 1 | 0 | 0 | 3 | 1 | 0.966 | 0.701 | 0.701 |
0 | 1 | 0 | 0 | 1 | 1 | 7 | 1 | 0.965 | 0.646 | 0.646 |
1 | 1 | 0 | 0 | 0 | 1 | 5 | 1 | 0.963 | 0.589 | 0.589 |
1 | 0 | 0 | 0 | 1 | 1 | 5 | 1 | 0.962 | 0.592 | 0.592 |
0 | 1 | 0 | 0 | 0 | 1 | 7 | 1 | 0.962 | 0.596 | 0.596 |
0 | 1 | 0 | 0 | 1 | 0 | 5 | 1 | 0.961 | 0.631 | 0.642 |
0 | 1 | 0 | 1 | 0 | 0 | 3 | 1 | 0.960 | 0.628 | 0.645 |
0 | 0 | 1 | 1 | 0 | 0 | 4 | 1 | 0.954 | 0.477 | 0.477 |
0 | 0 | 0 | 0 | 1 | 0 | 3 | 1 | 0.943 | 0.459 | 0.459 |
1 | 0 | 0 | 0 | 0 | 1 | 3 | 1 | 0.939 | 0.398 | 0.398 |
0 | 0 | 1 | 0 | 0 | 0 | 4 | 1 | 0.936 | 0.384 | 0.398 |
0 | 0 | 0 | 0 | 0 | 1 | 6 | 1 | 0.934 | 0.394 | 0.394 |
1 | 1 | 0 | 0 | 0 | 0 | 9 | 1 | 0.924 | 0.409 | 0.425 |
0 | 1 | 0 | 0 | 0 | 0 | 7 | 1 | 0.908 | 0.381 | 0.381 |
1 | 0 | 0 | 0 | 0 | 0 | 6 | 1 | 0.887 | 0.227 | 0.227 |
0 | 0 | 0 | 0 | 0 | 0 | 9 | 0 | 0.816 | 0.162 | 0.170 |
U | PRO | PRE | CE | COL | COM | Frequency | ~PB | Raw Consist | PRI Consist | SYM Consist |
---|---|---|---|---|---|---|---|---|---|---|
1 | 0 | 0 | 0 | 0 | 0 | 6 | 1 | 0.967 | 0.773 | 0.773 |
1 | 0 | 0 | 0 | 0 | 1 | 3 | 1 | 0.960 | 0.602 | 0.602 |
0 | 0 | 1 | 1 | 0 | 0 | 4 | 1 | 0.958 | 0.523 | 0.523 |
0 | 0 | 0 | 0 | 0 | 1 | 6 | 1 | 0.957 | 0.606 | 0.606 |
0 | 0 | 1 | 0 | 0 | 0 | 4 | 1 | 0.956 | 0.581 | 0.602 |
0 | 0 | 0 | 0 | 0 | 0 | 9 | 1 | 0.954 | 0.792 | 0.830 |
0 | 0 | 0 | 0 | 1 | 0 | 3 | 1 | 0.952 | 0.541 | 0.541 |
1 | 1 | 0 | 0 | 0 | 1 | 5 | 1 | 0.946 | 0.411 | 0.411 |
1 | 0 | 0 | 0 | 1 | 1 | 5 | 1 | 0.945 | 0.408 | 0.408 |
0 | 1 | 0 | 0 | 0 | 1 | 7 | 1 | 0.944 | 0.404 | 0.404 |
0 | 1 | 0 | 0 | 0 | 0 | 7 | 1 | 0.943 | 0.619 | 0.619 |
1 | 1 | 0 | 0 | 0 | 0 | 9 | 1 | 0.942 | 0.553 | 0.575 |
0 | 1 | 0 | 0 | 1 | 1 | 7 | 1 | 0.936 | 0.354 | 0.354 |
1 | 1 | 0 | 0 | 1 | 0 | 4 | 1 | 0.934 | 0.293 | 0.293 |
0 | 1 | 0 | 0 | 1 | 0 | 5 | 1 | 0.931 | 0.352 | 0.358 |
1 | 0 | 1 | 0 | 1 | 0 | 3 | 1 | 0.931 | 0.162 | 0.162 |
0 | 1 | 0 | 1 | 0 | 0 | 3 | 1 | 0.930 | 0.346 | 0.355 |
1 | 1 | 0 | 0 | 1 | 1 | 8 | 1 | 0.930 | 0.242 | 0.242 |
1 | 1 | 0 | 1 | 0 | 1 | 3 | 1 | 0.926 | 0.227 | 0.227 |
0 | 0 | 1 | 0 | 1 | 1 | 3 | 1 | 0.924 | 0.161 | 0.161 |
1 | 1 | 1 | 0 | 0 | 1 | 7 | 1 | 0.923 | 0.149 | 0.157 |
0 | 1 | 0 | 1 | 1 | 1 | 4 | 1 | 0.923 | 0.233 | 0.233 |
0 | 1 | 1 | 1 | 0 | 0 | 3 | 1 | 0.920 | 0.299 | 0.299 |
1 | 1 | 0 | 1 | 1 | 1 | 6 | 1 | 0.917 | 0.163 | 0.163 |
0 | 1 | 1 | 0 | 1 | 0 | 3 | 1 | 0.908 | 0.194 | 0.194 |
1 | 1 | 1 | 0 | 1 | 0 | 5 | 1 | 0.907 | 0.112 | 0.114 |
1 | 0 | 1 | 0 | 1 | 1 | 6 | 1 | 0.905 | 0.134 | 0.135 |
1 | 0 | 1 | 1 | 1 | 1 | 8 | 1 | 0.901 | 0.246 | 0.250 |
0 | 1 | 1 | 1 | 1 | 0 | 4 | 1 | 0.898 | 0.167 | 0.167 |
0 | 1 | 1 | 1 | 0 | 1 | 5 | 1 | 0.897 | 0.126 | 0.126 |
1 | 1 | 1 | 1 | 1 | 0 | 8 | 1 | 0.893 | 0.178 | 0.178 |
0 | 1 | 1 | 0 | 1 | 1 | 6 | 1 | 0.892 | 0.100 | 0.101 |
1 | 1 | 1 | 1 | 0 | 1 | 12 | 1 | 0.881 | 0.112 | 0.114 |
1 | 1 | 1 | 0 | 1 | 1 | 14 | 1 | 0.877 | 0.053 | 0.053 |
0 | 1 | 1 | 1 | 1 | 1 | 10 | 1 | 0.873 | 0.096 | 0.096 |
1 | 1 | 1 | 1 | 1 | 1 | 59 | 0 | 0.716 | 0.049 | 0.049 |
Solution (~Purchase Behaviors) | |||||||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
Uniqueness | |||||||||
Profitability | |||||||||
Prestige | |||||||||
CE | |||||||||
Collectability | |||||||||
Compatibility | |||||||||
Consistency | 0.879 | 0.910 | 0.859 | 0.878 | 0.897 | 0.946 | 0.912 | 0.872 | 0.893 |
Raw Coverage | 0.793 | 0.729 | 0.381 | 0.427 | 0.408 | 0.439 | 0.380 | 0.341 | 0.597 |
Unique Coverage | 0.033 | 0.005 | 0.002 | 0.004 | 0.004 | 0.007 | 0.003 | 0.007 | 0.001 |
Solution Coverage | 0.929 | ||||||||
Solution Consistency | 0.776 |
References
- Dowling, M. Fertile LAND: Pricing non-fungible tokens. Financ. Res. Lett. 2022, 44, 102096. [Google Scholar] [CrossRef]
- Nadini, M.; Alessandretti, L.; Di Giacinto, F.; Martino, M.; Aiello, L.M.; Baronchelli, A. Mapping the NFT revolution: Market trends, trade networks, and visual features. Sci. Rep. 2021, 11, 20902. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Horky, F.; Baals, L.J.; Lucey, B.M.; Vigne, S.A. Bubbles all the way down? Detecting and date-stamping bubble behaviours in NFT and DeFi markets. J. Chin. Econ. Bus. Stud. 2022, 20, 415–436. [Google Scholar] [CrossRef]
- Sestino, A.; Guido, G.; Peluso, A.M. Eterna Capital Non-fungible Tokens (NFTs)—The New Paradigm Medium; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar]
- Park, A.; Kietzmann, J.; Pitt, L.; Dabirian, A. The evolution of nonfungible tokens: Complexity and novelty of NFT use-cases. IT Prof. 2022, 24, 9–14. [Google Scholar] [CrossRef]
- Regner, F.; Urbach, N.; Schweizer, A. NFTs in practice–non-fungible tokens as core component of a blockchain-based event ticketing application. In Proceedings of the Fortieth International Conference on Information Systems, Munich, Germany, 15–18 December 2019. [Google Scholar]
- Wu, C.H.; Liu, C.Y. Educational applications of non-fungible token (NFT). Sustainability 2022, 15, 7. [Google Scholar] [CrossRef]
- Pinto-Gutiérrez, C.; Gaitán, S.; Jaramillo, D.; Velasquez, S. The NFT hype: What draws attention to non-fungible tokens? Mathematics 2022, 10, 335. [Google Scholar] [CrossRef]
- Bao, H.; Roubaud, D. Non-fungible token: A systematic review and research agenda. J. Risk Financ. Manag. 2022, 15, 215. [Google Scholar] [CrossRef]
- Lee, C.T.; Ho, T.Y.; Xie, H.H. Building brand engagement in metaverse commerce: The role of branded non-fungible tokens (BNFTs). Electron. Com. Res. Appl. 2023, 58, 101248. [Google Scholar] [CrossRef]
- Lee, S.H.; Kim, S.Y. An empirical study on factors affecting NFT purchase intention. J. Korea Ind. Inf. Syst. Res. 2022, 27, 93–104. [Google Scholar]
- Wu, C.H.; Liu, C.Y.; Weng, T.S. Critical factors and trends in NFT technology innovations. Sustainability 2023, 15, 7573. [Google Scholar] [CrossRef]
- Lu, Y.; Yang, S.; Chau, P.Y.K.; Cao, Y. Dynamics between the trust transfer process and intention to use mobile payment services: A cross-environment perspective. Inf. Manag. 2011, 48, 393–403. [Google Scholar]
- Yilmaz, T.; Sagfossen, S.; Velasco, C. What makes NFTs valuable to consumers? Perceived value drivers associated with NFTs liking, purchasing, and holding. J. Bus. Res. 2023, 165, 114056. [Google Scholar]
- Rogers Everett, M. Diffusion of Innovations; Routledge: New York, NY, USA, 1995; p. 576. [Google Scholar]
- Ashforth, B.E.; Mael, F. Social identity theory and the organization. Acad. Manag. Rev. 1989, 14, 20–39. [Google Scholar]
- Kim, H.W.; Chan, H.C.; Gupta, S. Value-based adoption of mobile internet: An empirical investigation. Decis. Support Syst. 2007, 43, 111–126. [Google Scholar] [CrossRef]
- Ante, L. Non-fungible token (NFT) markets on the Ethereum blockchain: Temporal development, cointegration and interrelations. Econ. Innov. New Technol. 2023, 32, 1216–1234. [Google Scholar]
- Ali, O.; Momin, M.; Shrestha, A.; Das, R.; Alhajj, F.; Dwivedi, Y.K. A review of the key challenges of non-fungible tokens. Technol. Forecast. Soc. Change 2023, 187, 122248. [Google Scholar]
- Wang, Q.; Li, R.; Wang, Q.; Chen, S. Non-fungible token (NFT): Overview, evaluation, opportunities and challenges. arXiv 2021, arXiv:2105.07447. [Google Scholar]
- Maouchi, Y.; Charfeddine, L.; El Montasser, G. Understanding digital bubbles amidst the COVID-19 pandemic: Evidence from DeFi and NFTs. Financ. Res. Lett. 2022, 47, 102584. [Google Scholar] [CrossRef]
- Bamakan, S.M.H.; Nezhadsistani, N.; Bodaghi, O.; Qu, Q. Patents and intellectual property assets as non-fungible tokens; key technologies and challenges. Sci. Rep. 2022, 12, 2178. [Google Scholar]
- Chalmers, D.; Fisch, C.; Matthews, R.; Quinn, W.; Recker, J. Beyond the bubble: Will NFTs and digital proof of ownership empower creative industry entrepreneurs? J. Bus. Ventur. Insights 2022, 17, e00309. [Google Scholar]
- Wu, C.H.; Dong, T.P.; Liu, C.H.; Vu, H.T. Discovering the critical factors of affecting non-fungible tokens (NFT) purchase intention. Int. Rev. Econ. Financ. 2024, 96, 103660. [Google Scholar] [CrossRef]
- Fortagne, M.A.; Lis, B. Determinants of the purchase intention of non-fungible token collectibles. J. Consum. Behav. 2024, 23, 1032–1049. [Google Scholar] [CrossRef]
- Kumar, A.; Shankar, A.; Behl, A.; Wamba, S.F. Do you believe in the metaverse NFTs? Understanding the value proposition of NFTs in the metaverse. Technol. Forecast. Soc. Change 2025, 210, 123880. [Google Scholar] [CrossRef]
- Alexander, C. Generative Avatar Non-fungible Token Collections, version 1; University of Sussex: Brighton, UK, 2022. [Google Scholar]
- Hofstetter, R.; de Bellis, E.; Brandes, L.; Clegg, M.; Lamberton, C.; Reibstein, D.; Rohlfsen, F.; Schmitt, B.; Zhang, J.Z. Crypto-marketing: How non-fungible tokens (NFTs) challenge traditional marketing. Mark. Lett. 2022, 33, 705–711. [Google Scholar] [CrossRef]
- Balashova, N. Making Money with NFT Art. Bachelor’s Thesis, Aalto University, Espoo, Finland, 2023. [Google Scholar]
- Sestino, A.; Guido, G.; Peluso, A.M. The interplay of consumer innovativeness and status consumption orientation when buying NFT-based fashion products. In Non-Fungible Tokens (NFTs) Examining the Impact on Consumers and Marketing Strategies; Springer International Publishing: Cham, Germany, 2022; pp. 63–75. [Google Scholar]
- Cho, M.; Ko, E.; Taylor, C.R. Do non-fungible tokens create long-term value for luxury brands? The effect of NFT promotions on customer equity. Comput. Hum. Behav. 2024, 159, 108347. [Google Scholar] [CrossRef]
- Tausch, N.; Schmid, K.; Hewstone, M. The Social Psychology of Intergroup Relations. In Handbook on Peace Education; Routledge: London, UK, 2010; pp. 75–86. [Google Scholar]
- Agag, G.; El-Masry, A.A. Understanding consumer intention to participate in online travel community and effects on consumer intention to purchase travel online and WOM: An integration of innovation diffusion theory and TAM with trust. Comput. Hum. Behav. 2016, 60, 97–111. [Google Scholar] [CrossRef]
- Al-Rahmi, W.M.; Yahaya, N.; Aldraiweesh, A.A.; Alamri, M.M.; Aljarboa, N.A.; Alturki, U.; Aljeraiwi, A.A. Integrating technology acceptance model with innovation diffusion theory: An empirical investigation on students’ intention to use E-learning systems. IEEE Access 2019, 7, 26797–26809. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, W. Customer engagement around cultural and creative products: The role of social identity. Front. Psychol. 2022, 13, 874851. [Google Scholar] [CrossRef]
- Hobson, N. Available online: https://www.inc.com/nick-hobson/bored-ape-yacht-club-nfts.html (accessed on 9 July 2024).
- SEKKEI Digital Group. Available online: https://sekkeidigitalgroup.com/attracting-chinese-nft-investors-in-2022/ (accessed on 20 July 2024).
- Zeithaml, V.A. Consumer perceptions of price, quality, and value: A means-end model and synthesis of evidence. J. Mark. 1988, 52, 2–22. [Google Scholar] [CrossRef]
- Sánchez-Fernández, R.; Iniesta-Bonillo, M.Á. The concept of perceived value: A systematic review of the research. Mark. Theor. 2007, 7, 427–451. [Google Scholar] [CrossRef]
- Sweeney, J.C.; Soutar, G.N. Consumer perceived value: The development of a multiple item scale. J. Retail. 2001, 77, 203–220. [Google Scholar]
- Dwivedi, A.; Nayeem, T.; Murshed, F. Brand experience and consumers’ willingness-to-pay (WTP) a price premium: Mediating role of brand credibility and perceived uniqueness. J. Retail. Consum. Serv. 2018, 44, 100–107. [Google Scholar]
- Chandra, Y. Non-fungible token-enabled entrepreneurship: A conceptual framework. J. Bus. Ventur. Insights 2022, 18, e00323. [Google Scholar]
- Tian, K.T.; Bearden, W.O.; Hunter, G.L. Consumers’ need for uniqueness: Scale development and validation. J. Consum. Res. 2001, 28, 50–66. [Google Scholar]
- Snyder, C.R. Product scarcity by need for uniqueness interaction: A consumer catch-22 carousel? Basic Appl. Soc. Psychol. 1992, 13, 9–24. [Google Scholar]
- Chieng, F.; Sharma, P.; Kingshott, R.P.; Roy, R. Interactive effects of self-congruity and need for uniqueness on brand loyalty via brand experience and brand attachment. J. Prod. Brand Manag. 2022, 31, 870–885. [Google Scholar] [CrossRef]
- Trautman, L.J. Virtual art and non-fungible tokens. Hofstra L. Rev. 2021, 50, 361. [Google Scholar] [CrossRef]
- Cao, Y.; Xia, M.; Shigyo, K.; Cheng, F.; Yu, Q.; Yang, X.; Wang, Y.; Zeng, W.; Qu, H. NFTeller: Dual-centric visual analytics for assessing market performance of NFT collectibles. In Proceedings of the International Symposium on Visual Information Communication and Interaction, Guangzhou, China, 22–24 September 2023; ACM: New York, NY, USA, 2023; pp. 1–8. [Google Scholar]
- Cheung, H.; Baumber, A.; Brown, P.J. Barriers and enablers to sustainable finance: A case study of home loans in an Australian retail bank. J. Clean. Prod. 2022, 334, 130211. [Google Scholar]
- Lee, H.J.; Kim, H.J. A study on cryptocurrency market in china. J. Digit. Contents Soc. 2019, 20, 537–545. [Google Scholar]
- Ahmad, I.; Ahmad, M.O.; Ahmad, M.O.; Almazroi, A.A.; Khan Khalil, M.I.; Alqarni, M.A. Using algorithmic trading to analyze short term profitability of Bitcoin, Peer. J. Comput. Sci. 2021, 7, e337. [Google Scholar]
- De Angelis, P.; De Marchis, R.; Marino, M.; Martire, A.L.; Oliva, I. Betting on bitcoin: A profitable trading between directional and shielding strategies. Decis. Econ. Financ. 2021, 44, 883–903. [Google Scholar]
- Lamosa, R.G.; Muammil, S.S. Exploring the accountancy students’ perception on the profitability of non-fungible token (NFT) games. Neuroquantology 2022, 20, 8049. [Google Scholar]
- Ki, C.W.; Kim, Y.K. The mechanism by which social media influencers persuade consumers: The role of consumers’ desire to mimic. Psychol. Mark. 2019, 36, 905–922. [Google Scholar]
- Cebi, S. A quality evaluation model for the design quality of online shopping websites. Electron. Com. Res. Appl. 2013, 12, 124–135. [Google Scholar]
- Neunhoeffer, F.; Teubner, T. Between enthusiasm and refusal: A cluster analysis on consumer types and attitudes towards peer-to-peer sharing. J. Consum. Behav. 2018, 17, 221–236. [Google Scholar] [CrossRef]
- Lo, P.S.; Dwivedi, Y.K.; Wei-Han Tan, G.; Ooi, K.B.; Cheng-Xi Aw, E.; Metri, B. Why do consumers buy impulsively during live streaming? A deep learning-based dual-stage SEM-ANN analysis. J. Bus. Res. 2022, 147, 325–337. [Google Scholar]
- Vasan, K.; Janosov, M.; Barabási, A.L. Quantifying NFT-driven networks in crypto art. Sci. Rep. 2022, 12, 2769. [Google Scholar]
- Breidbach, C.F.; Tana, S. Betting on Bitcoin: How social collectives shape cryptocurrency markets. J. Bus. Res. 2021, 122, 311–320. [Google Scholar] [CrossRef]
- Sinnott, A.; Zhou, K.Z. How NFT collectors experience online NFT communities: A case study of bored ape. arXiv 2023, arXiv:2309.09320. [Google Scholar]
- Jensen Schau, H.; Gilly, M.C. We are what we post? Self-presentation in personal web space. J. Consum. Res. 2003, 30, 385–404. [Google Scholar] [CrossRef]
- Booth, P. Digital Fandom: New Media Studies; Peter Lang Publishing: Lausanne, Switzerland, 2010. [Google Scholar]
- Wu, Y.; Nambisan, S.; Xiao, J.; Xie, K. Consumer resource integration and service innovation in social commerce: The role of social media influencers. J. Acad. Mark. Sci. 2022, 50, 429–459. [Google Scholar] [CrossRef]
- Serada, A.; Sihvonen, T.; Harviainen, J.T. CryptoKitties and the new ludic economy: How blockchain introduces value, ownership, and scarcity in digital gaming. Games Cult. 2021, 16, 457–480. [Google Scholar] [CrossRef]
- White, B.; Mahanti, A.; Passi, K. Characterizing the OpenSea NFT marketplace. In Proceedings of the Companion Proceedings of the Web Conference, Virtual Event, Lyon, France, 25–29 April 2022; ACM: New York, USA, 2022; pp. 488–496. [Google Scholar]
- Amaro, S.; Duarte, P. An integrative model of consumers’ intentions to purchase travel online. Tour. Manag. 2015, 46, 64–79. [Google Scholar] [CrossRef]
- Gong, T.; Wang, C.Y.; Lee, K. Effects of characteristics of in-store retail technology on customer citizenship behavior. J. Retail. Consum. Serv. 2022, 65, 102488. [Google Scholar] [CrossRef]
- Konuk, F.A. The role of store image, perceived quality, trust and perceived value in predicting consumers’ purchase intentions towards organic private label food. J. Retail. Consum. Serv. 2018, 43, 304–310. [Google Scholar] [CrossRef]
- Schmidt, L.C.; Frieze, I.H. A mediational model of power, affiliation and achievement motives and product involvement. J. Bus. Psychol. 1997, 11, 425–446. [Google Scholar] [CrossRef]
- Casaló, L.V.; Flavián, C.; Ibáñez-Sánchez, S. Influencers on Instagram: Antecedents and consequences of opinion leadership. J. Bus. Res. 2020, 117, 510–519. [Google Scholar] [CrossRef]
- Sirdeshmukh, D.; Singh, J.; Sabol, B. Consumer trust, value, and loyalty in relational exchanges. J. Mark. 2002, 66, 15–37. [Google Scholar] [CrossRef]
- Hwang, K.; Zhang, Q. Influence of parasocial relationship between digital celebrities and their followers on followers’ purchase and electronic word-of-mouth intentions, and persuasion knowledge. Comput. Hum. Behav. 2018, 87, 155–173. [Google Scholar] [CrossRef]
- Brislin, R.W. Expanding the role of the interpreter to include multiple facets of intercultural communication. Int. J. Intercult. Relat. 1980, 4, 137–148. [Google Scholar] [CrossRef]
- Hair Joseph, F.; Black William, C.; Babin Barry, J.; Anderson Rolph, E. Multivariate Data Analysis: A Global Perspective; Pearson: London, UK, 2010. [Google Scholar]
- Woodside, A.G. Moving beyond multiple regression analysis to algorithms: Calling for adoption of a paradigm shift from symmetric to asymmetric thinking in data analysis and crafting theory. J. Bus. Res. 2013, 66, 463–472. [Google Scholar] [CrossRef]
- Woodside, A.G. Embrace•perform•model: Complexity theory, contrarian case analysis, and multiple realities. J. Bus. Res. 2014, 67, 2495–2503. [Google Scholar]
- Taherdoost, H. Non-fungible tokens (NFT): A systematic review. Information 2022, 14, 26. [Google Scholar] [CrossRef]
- Howard, M.C. A systematic literature review of exploratory factor analyses in management. J. Bus. Res. 2023, 164, 113969. [Google Scholar]
- Hair, J.F.; Anderson, R.E.; Tatham, R.L.; Black, W.C. Multivariate Data Analysis, 5th ed.; Prentice Hall Incorporated: Hoboken, NJ, USA, 1998. [Google Scholar]
- Lam, L.W. Impact of competitiveness on salespeople’s commitment and performance. J. Bus. Res. 2012, 65, 1328–1334. [Google Scholar]
- Voorhees, C.M.; Brady, M.K.; Calantone, R.; Ramirez, E. Discriminant validity testing in marketing: An analysis, causes for concern, and proposed remedies. J. Acad. Mark. Sci. 2016, 44, 119–134. [Google Scholar]
- Podsakoff, P.M.; MacKenzie, S.B.; Lee, J.Y.; Podsakoff, N.P. Common method biases in behavioral research: A critical review of the literature and recommended remedies. J. Appl. Psychol. 2003, 88, 879–903. [Google Scholar]
- Miller, B.K.; Simmering, M.J. Attitude toward the color blue: An ideal marker variable. Organ. Res. Methods 2023, 26, 409–440. [Google Scholar]
- Lindell, M.K.; Whitney, D.J. Accounting for common method variance in cross-sectional research designs. J. Appl. Psychol. 2001, 86, 114–121. [Google Scholar]
- Kline, R.B. Principles and Practice of Structural Equation Modeling, 3rd ed.; Guilford Publications: New York, NY, USA, 2011. [Google Scholar]
- Neter, J.; Kutner, M.H.; Nachtsheim, C.J.; Wasserman, W. Applied Linear Statistical Models. 1996. Available online: https://mubert.marshall.edu/bert/syllabi/310720160114404301635160.pdf (accessed on 12 October 2024).
- Hayes, A.F. PROCESS: A Versatile Computational Tool for Observed Variable Mediation, Moderation, and Conditional Process Modeling. 2012. Available online: https://www.scribd.com/document/584444554/PROCESS-a-Versatile-Computational-Tool-for-Observed-Variable-Mediation-Moderation-And-Conditional-Process-Modeling-1 (accessed on 16 October 2024).
- Pappas, I.O.; Woodside, A.G. Fuzzy-set Qualitative Comparative Analysis (fsQCA): Guidelines for research practice in Information Systems and marketing. Int. J. Inf. Manag. 2021, 58, 102310. [Google Scholar]
- Ragin, C.C. Redesigning Social Inquiry: Fuzzy Sets and Beyond; University of Chicago Press: Chicago, IL, USA, 2009. [Google Scholar]
- Rasoolimanesh, S.M.; Ringle, C.M.; Sarstedt, M.; Olya, H. The combined use of symmetric and asymmetric approaches: Partial least squares-structural equation modeling and fuzzy-set qualitative comparative analysis. Int. J. Contemp. Hosp. Manag. 2021, 33, 1571–1592. [Google Scholar] [CrossRef]
- Pappas, I.O.; Kourouthanassis, P.E.; Giannakos, M.N.; Chrissikopoulos, V. Explaining online shopping behavior with fsQCA: The role of cognitive and affective perceptions. J. Bus. Res. 2016, 69, 794–803. [Google Scholar] [CrossRef]
- Woodside, A.G.; Sood, S.; Miller, K.E. When consumers and brands talk: Storytelling theory and research in psychology and marketing. Psychol. Mark. 2008, 25, 97–145. [Google Scholar] [CrossRef]
Construct | Definition | Source of Development |
---|---|---|
Uniqueness | The degree to which consumers perceive the uniqueness of NFT digital art content | [10,69] |
Profitability | Users’ perception of the potential financial gains derived from engaging with the service | [11,48] |
Prestige | The degree to which a digital artwork is perceived as a symbol of high social status | [11,69] |
Community Engagement | The perceived levels of interaction, participation, and connection in the NFT digital artwork community | [14,61] |
Collectability | The degree to which NFT digital artworks are perceived as appealing or possessing collectible value | [12,63] |
Compatibility | The degree to which users perceive that buying NFT content aligns with their needs, lifestyles, and shopping preferences | [33,66,67] |
Perceived Value | The subjective perception of the value of an NFT digital artwork | [38,40,67,70] |
Purchase Behavior | Consumers’ intentions, motivations, and actions | [25,71] |
Items | Frequency | Percentage (%) | |
---|---|---|---|
Gender | Male | 191 | 63.7 |
Female | 109 | 36.3 | |
Age | <20 | 18 | 6.0 |
20~29 | 208 | 69.3 | |
30~39 | 62 | 20.7 | |
40~49 | 5 | 1.7 | |
>49 | 7 | 2.3 | |
Education | High school graduate or below | 15 | 5.0 |
At college | 41 | 13.7 | |
College graduates | 214 | 71.3 | |
Master’s degree or above | 30 | 10.0 | |
Occupation | Housewife student | 9 | 3.0 |
Freelancer | 76 | 25.3 | |
Student | 73 | 24.3 | |
Staff | 112 | 37.3 | |
Self-employed entrepreneur | 21 | 7.0 | |
Other | 9 | 3.0 | |
Income (Yuan) | ≤2000 | 33 | 11.0 |
2000~5000 | 91 | 30.3 | |
5000~10,000 | 128 | 42.7 | |
>10,000 | 48 | 16.0 | |
Experience (Months) | <6 | 32 | 10.7 |
6~12 | 76 | 25.3 | |
12~24 | 108 | 36.0 | |
>24 | 84 | 28.0 | |
Frequency (Times) | 1~2 | 79 | 26.3 |
5~8 | 100 | 33.3 | |
9~12 | 72 | 24.0 | |
≥13 | 49 | 16.3 |
Items | EFA | CFA | CA | AVE | CR |
---|---|---|---|---|---|
<Uniqueness> | 0.724 | 0.469 | 0.726 | ||
The NFT digital artwork is one of a kind. | 0.684 | 0.677 | |||
Unique artistic aesthetics are offered. | 0.553 | 0.667 | |||
NFT digital artworks are creative. | 0.698 | 0.710 | |||
<Profitability> | 0.705 | 0.449 | 0.709 | ||
NFT digital artworks can be profitable. | 0.596 | 0.630 | |||
The profitability of NFT digital artworks is important. | 0.781 | 0.656 | |||
NFT digital artworks can bring greater benefits. | 0.803 | 0.721 | |||
<Prestige> | 0.830 | 0.553 | 0.832 | ||
NFT digital artworks are upscaled. | 0.756 | 0.753 | |||
NFT digital artworks are prestigious. | 0.730 | 0.774 | |||
NFT digital artworks provide a sense of status. | 0.748 | 0.691 | |||
Prestigious NFT digital artworks are more attractive. | 0.692 | 0.755 | |||
<Community Engagement> | 0.822 | 0.538 | 0.823 | ||
NFT digital artwork community activities are meaningful. | 0.689 | 0.736 | |||
NFT digital artwork community activities are professional. | 0.743 | 0.695 | |||
NFT digital artwork community involvement is attractive. | 0.754 | 0.736 | |||
Communities provide a platform for people with similar interests to connect. | 0.803 | 0.765 | |||
<Collectability> | 0.809 | 0.593 | 0.814 | ||
NFT digital artworks possess collectible value. | 0.729 | 0.751 | |||
Collectible NFT digital artworks are more popular. | 0.778 | 0.737 | |||
Collectible NFT digital artworks are more attractive. | 0.823 | 0.820 | |||
<Compatibility> | 0.733 | 0.483 | 0.736 | ||
NFT digital artworks align with consumer values. | 0.757 | 0.622 | |||
NFT digital artworks meet consumer preferences. | 0.726 | 0.686 | |||
NFT digital artworks align with the needs of one’s previous purchasing experience. | 0.615 | 0.769 | |||
<Perceived Value> | 0.765 | 0.525 | 0.767 | ||
Owning NFT digital artworks is very meaningful to me. | 0.762 | 0.675 | |||
NFT digital artworks hold sentimental value for me. | 0.803 | 0.702 | |||
NFT digital artworks are valuable products. | 0.836 | 0.791 | |||
<Purchase Behaviors> | 0.791 | 0.490 | 0.793 | ||
I will purchase one shortly. | 0.786 | 0.683 | |||
The probability that I would consider purchasing this NFT is high. | 0.699 | 0.672 | |||
I am certain about purchasing an NFT at some point. | 0.761 | 0.698 | |||
I would consider purchasing this NFT at the expected price. | 0.796 | 0.744 |
Construct | Mean | S.D. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|---|---|
- | - | 0.68 | 0.67 | 0.74 | 0.73 | 0.77 | 0.69 | 0.72 | 0.70 | |
Uniqueness | 4.20 | 0.72 | 1 | |||||||
Profitability | 4.15 | 0.68 | 0.42 ** | 1 | ||||||
Prestige | 4.03 | 0.81 | 0.47 ** | 0.38 ** | 1 | |||||
Community Engagement | 4.17 | 0.73 | 0.49 ** | 0.39 ** | 0.44 ** | 1 | ||||
Collectability | 4.18 | 0.81 | 0.52 ** | 0.30 ** | 0.51 ** | 0.43 ** | 1 | |||
Compatibility | 4.19 | 0.73 | 0.51 ** | 0.34 ** | 0.58 ** | 0.34 ** | 0.42 ** | 1 | ||
PercV | 4.20 | 0.74 | 0.52 ** | 0.35 ** | 0.57 ** | 0.48 ** | 0.40 ** | 0.56 ** | 1 | |
PB | 4.21 | 0.69 | 0.35 ** | 0.46 ** | 0.40 ** | 0.54 ** | 0.43 ** | 0.38 ** | 0.46 ** | 1 |
Hypothesis | Standard β | t | Test Result | |||
---|---|---|---|---|---|---|
H1a | Uniqueness | → | Perceived Value | 0.164 | 2.875 ** | Accept |
H2a | Profitability | 0.018 | 0.365 | Reject | ||
H3a | Prestige | 0.261 | 4.529 *** | Accept | ||
H4a | Community Engagement | 0.204 | 3.935 *** | Accept | ||
H5a | Collectability | −0.026 | −0.481 | Reject | ||
H6a | Compatibility | 0.267 | 4.838 *** | Accept | ||
H1b | Uniqueness | → | Purchase Behaviors | −0.109 | −1.802 | Reject |
H2b | Profitability | 0.256 | 4.957 *** | Accept | ||
H3b | Prestige | 0.013 | 0.206 | Reject | ||
H4b | Community Engagement | 0.353 | 6.426 *** | Accept | ||
H5b | Collectability | 0.193 | 3.387 *** | Accept | ||
H6b | Compatibility | 0.147 | 2.510 * | Accept | ||
H7 | Perceived Value | → | Purchase Behaviors | 0.466 | 9.095 *** | Accept |
Path | Effect | SE | LLCI | ULCI | Effect Size (%) |
---|---|---|---|---|---|
Uniqueness → Perceived Value → Purchase Behaviors | 0.192 | 0.054 | 0.095 | 0.307 | 56.3 |
Profitability → Perceived Value → Purchase Behaviors | 0.124 | 0.045 | 0.048 | 0.223 | 26.5 |
Prestige → Perceived Value → Purchase Behaviors | 0.174 | 0.050 | 0.086 | 0.280 | 50.7 |
Community Engagement → Perceived Value → Purchase Behaviors | 0.123 | 0.053 | 0.037 | 0.245 | 24.0 |
Collectability → Perceived Value → Purchase Behaviors | 0.119 | 0.042 | 0.048 | 0.210 | 32.1 |
Compatibility → Perceived Value → Purchase Behaviors | 0.195 | 0.057 | 0.090 | 0.314 | 52.8 |
Construct | Purchase Behavior | ~Purchase Behavior | ||
---|---|---|---|---|
Consistency | Coverage | Consistency | Coverage | |
Uniqueness | 0.714 | 0.846 | 0.653 | 0.700 |
~Uniqueness | 0.747 | 0.704 | 0.856 | 0.730 |
Profitability | 0.794 | 0.837 | 0.682 | 0.650 |
~Profitability | 0.668 | 0.699 | 0.829 | 0.785 |
Prestige | 0.734 | 0.872 | 0.602 | 0.647 |
~Prestige | 0.702 | 0.662 | 0.881 | 0.750 |
Community Engagement | 0.640 | 0.889 | 0.543 | 0.682 |
~Community Engagement | 0.771 | 0.651 | 0.912 | 0.696 |
Collectability | 0.729 | 0.882 | 0.613 | 0671 |
~Collectability | 0.728 | 0.676 | 0.892 | 0.748 |
Compatibility | 0.762 | 0.876 | 0.647 | 0.674 |
~Compatibility | 0.716 | 0.692 | 0.881 | 0.770 |
Construct | Solution | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
Uniqueness | ||||||||||||
Profitability | ||||||||||||
Prestige | ||||||||||||
CE | ||||||||||||
Collectability | ||||||||||||
Compatibility | ||||||||||||
Consistency | 0.885 | 0.970 | 0.955 | 0.964 | 0.884 | 0.936 | 0.970 | 0.980 | 0.961 | 0.932 | 0.941 | 0.908 |
Raw Coverage | 0.535 | 0.525 | 0.548 | 0.541 | 0.460 | 0.488 | 0.382 | 0.422 | 0.474 | 0.391 | 0.438 | 0.472 |
Unique Coverage | 0.003 | 0.003 | 0.010 | 0.003 | 0.003 | 0.011 | 0.003 | 0.003 | 0.006 | 0.006 | 0.003 | 0.001 |
Solution Coverage | 0.883 | |||||||||||
Solution Consistency | 0.848 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, Z.-H.; Xu, C.; Cho, S.-E. Content Characteristics and Customer Purchase Behaviors in Nonfungible Token Digital Artwork Trading. J. Theor. Appl. Electron. Commer. Res. 2025, 20, 65. https://doi.org/10.3390/jtaer20020065
Bai Z-H, Xu C, Cho S-E. Content Characteristics and Customer Purchase Behaviors in Nonfungible Token Digital Artwork Trading. Journal of Theoretical and Applied Electronic Commerce Research. 2025; 20(2):65. https://doi.org/10.3390/jtaer20020065
Chicago/Turabian StyleBai, Zi-Hui, Chao Xu, and Sung-Eui Cho. 2025. "Content Characteristics and Customer Purchase Behaviors in Nonfungible Token Digital Artwork Trading" Journal of Theoretical and Applied Electronic Commerce Research 20, no. 2: 65. https://doi.org/10.3390/jtaer20020065
APA StyleBai, Z.-H., Xu, C., & Cho, S.-E. (2025). Content Characteristics and Customer Purchase Behaviors in Nonfungible Token Digital Artwork Trading. Journal of Theoretical and Applied Electronic Commerce Research, 20(2), 65. https://doi.org/10.3390/jtaer20020065