The Social Impact from Danmu—Insights from Esports Online Videos
Abstract
:1. Introduction
2. Literature Review
2.1. Social Impact Theory
2.2. Studies on Danmu and Online Viewer Interaction
2.3. Studies on Sport and Esports Demand
3. Hypotheses Development
3.1. The Impact of Danmu Comments on the Behavior of Full-Length Match Viewers
3.2. The Moderating Effect of a Full-Length Match on the Impact of Danmu Comments
4. Methodology
4.1. Data and Research Context
4.2. Econometric Models
4.2.1. The Impact of Danmu Comments on the Behavior of Full-Length Match Viewers
4.2.2. Moderating Effect of Full-Length Match on the Impact of Danmu Comments
4.2.3. Identification Strategy: Two-Stage Least Squares with an Instrumental Variable
4.3. Summary Statistics
5. Regression Results
5.1. Estimated Effects of Danmu Comments’ Impact on the Behavior of Full-Length Match Viewers
5.2. Estimated Moderating Effect of Full-Length Match on the Impact of Danmu Comments
6. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nielsen., U.S. Video 360 Report. 2018. Available online: https://www.nielsen.com/us/en/insights/report/2018/video-360-2018-report/ (accessed on 27 August 2018).
- China Internet Network Information Center (CONNIC). China Internet Audio & Video; CONNIC: Beijing, China, 2021. [Google Scholar]
- Scheibe, K.; Fietkiewicz, K.J.; Stock, W.G. Information behavior on social live streaming services. J. Inf. Sci. Theory Pract. 2016, 4, 6–20. [Google Scholar] [CrossRef] [Green Version]
- Fang, J.; Chen, L.; Wen, C.; Prybutok, V.R. Co-viewing experience in video websites: The effect of social presence on e-loyalty. Int. J. Electron. Commer. 2018, 22, 446–476. [Google Scholar] [CrossRef]
- Chen, Y.; Gao, Q.; Rau, P.-L.P. Watching a movie alone yet together: Understanding reasons for watching Danmaku videos. Int. J. Hum.-Comput. Interact. 2017, 33, 731–743. [Google Scholar] [CrossRef]
- Chen, Y.; Gao, Q.; Yuan, Q.; Tang, Y. Facilitating students’ interaction in MOOCs through timeline-anchored discussion. Int. J. Hum.-Comput. Interact. 2019, 35, 1781–1799. [Google Scholar] [CrossRef]
- Li, Y.; Guo, Y. Virtual gifting and danmaku: What motivates people to interact in game live streaming? Telematics. Inform. 2021, 62, 101624. [Google Scholar] [CrossRef]
- He, M.; Ge, Y.; Wu, L.; Chen, E.; Tan, C. Predicting the popularity of DanMu-enabled videos: A multi-factor view. In Proceeding of the 21th International Conference on Database Systems for Advanced Applications, Dallas, TX, USA, 16–19 April 2016; Springer: Berlin/Heidelberg, Germany, 2016; pp. 351–366. [Google Scholar]
- Bilibili 2021 “Danmu”; Bilibili: Shanghai, China; Chinese Academy of Social Science: Beijing, China; The People’s Literature Publishing House: Beijing, China, 2021.
- Hilvert-Bruce, Z.; Neill, J.T.; Sjöblom, M.; Hamari, J. Social motivations of live-streaming viewer engagement on Twitch. Comput. Hum. Behav. 2018, 84, 58–67. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.S.; Kim, M. Viewing sports online together? Psychological consequences on social live streaming service usage. Sport Manag. Rev. 2020, 23, 869–882. [Google Scholar] [CrossRef]
- Bai, Q.; Hu, Q.; Fang, F.; Ge, L.; He, L. Topic Detection with Danmaku: A Time-Sync Join NMF Approach. Database and Expert Systems Applications; Springer: Berlin/Heidelberg, Germany, 2018; pp. 428–435. [Google Scholar]
- Wang, F.; Fu, X.; Sun, Z. A Comparative Analysis of the Impact of Barrage and Comments on Video Popularity. IEEE Access 2021, 9, 164659–164667. [Google Scholar] [CrossRef]
- Li, H.; Sakamoto, Y. Social impacts in social media: An examination of perceived trustfulness and sharing of information. Comput. Hum. Behav. 2014, 41, 278–287. [Google Scholar] [CrossRef]
- Cialdini, R.B.; Goldstein, N.J. Social influence: Compliance and conformity. Annu. Rev. Psychol. 1981, 55, 591–621. [Google Scholar] [CrossRef]
- Latané, B. The psychology of social impact. Am. Psychol. 1981, 36, 343–356. [Google Scholar] [CrossRef]
- Angrist, J.; Pischke, J.-S. Mastering Metrics: The Path from Cause to Effect; Princeton University Press: Princeton, NJ, USA, 2014. [Google Scholar]
- Basmann, R.L. A generalized classical method of linear estimation of coefficients in a structural equation. Econometrica 1957, 25, 77–83. [Google Scholar] [CrossRef]
- Theil, H. Principles of Econometrics; John Wiley: New York, NY, USA, 1971. [Google Scholar]
- Argo, J.J.; Dahl, D.W.; Manchanda, R.V. The Influence of a Mere Social Presence in a Retail Context. J. Consum. Res. 2005, 32, 207–212. [Google Scholar] [CrossRef] [Green Version]
- Oc, B.; Bashshur, M.R. Followership, leadership and social influence. Leadersh. Q. 2013, 24, 919–934. [Google Scholar] [CrossRef]
- Ang, T.; Wei, S.; Anaza, N.A. Livestreaming vs pre-recorded: How social viewing strategies impact consumers’ viewing experiences and behavioral intentions. Eur. J. Mark. 2018, 52, 2075–2104. [Google Scholar] [CrossRef]
- McCullough, J.L. The Role of Coviewing in the Development of Materialistic Attitudes. Commun. Res. Rep. 2014, 31, 92–101. [Google Scholar] [CrossRef]
- Shin, D.H.; Roh, O. Social television and locus of control: Interactivity effects on cognition and behavior. Soc. Behav. Personal. Int. J. 2016, 44, 1671–1686. [Google Scholar] [CrossRef]
- Oh, C.; Roumani, Y.; Nwankpa, J.K.; Hu, H.-F. Beyond likes and tweets: Consumer engagement behavior and movie box office in social media. Inf. Manag. 2017, 54, 25–37. [Google Scholar] [CrossRef]
- Hutzinger, C.; Weitzl, W.J. Co-creation of online service recoveries and its effects on complaint bystanders. J. Bus. Res. 2021, 130, 525–538. [Google Scholar] [CrossRef]
- Pedersen, P.M.; Laucella, P.C.; Kian, E.; Geurin, A.N. Strategic Sport Communication; Human Kinetics: Champaign, IL, USA, 2018. [Google Scholar]
- Pagani, M.; Mirabello, A. The Influence of Personal and Social-Interactive Engagement in Social TV Web Sites. Int. J. Electron. Commer. 2011, 16, 41–68. [Google Scholar] [CrossRef]
- Bründl, S.; Hess, T. Why do users broadcast? Examining individual motives and social capital on social live streaming platforms. In Proceedings of the 20th Pacific Asia Conference on Information Systems, Chiayi, Taiwan, 27 June–1 July 2016; pp. 332–348. [Google Scholar]
- Seo, Y. Professionalized consumption and identity transformations in the field of eSports. J. Bus. Res. 2015, 69, 264–272. [Google Scholar] [CrossRef]
- Chen, C.-C.; Lin, Y.-C. What drives live-stream usage intention? The perspectives of flow, entertainment, social interaction, and endorsement. Telemat. Inform. 2018, 35, 293–303. [Google Scholar] [CrossRef]
- Li, B.; Guan, Z.; Chong, A.Y.; Hou, F. What drives people to purchase virtual gifts in live streaming? The mediating role of flow. In Proceedings of the 22nd Pacific Asia Conference on Information Systems, Yokohama, Japan, 26–30 June 2018; pp. 3434–3447. [Google Scholar]
- Li, B.; Naraine, M.L.; Zhao, L.; Li, C. A Magic “Bullet”: Exploring Sport Fan Usage of On-Screen, Ephemeral Posts During Live Stream Sessions. Commun. Sport 2021, 1–22. [Google Scholar] [CrossRef]
- Ma, X.; Cao, N. Video-based evanescent, anonymous, asynchronous social interaction: Motivation and adaption to medium. In Proceedings of the 2017 ACM Conference on Computer Supported Cooperative Work and Social Computing, Portland, OR, USA, 25 February–1 March 2017; pp. 770–782. [Google Scholar]
- Yao, Y.; Bort, J.; Huang, Y. Understanding Danmaku’s potential in online video learning. In Proceedings of the 2017 CHI Conference Extended Abstracts on Human Factors in Computing Systems, Denver, CO, USA, 6–11 May 2017; pp. 3034–3040. [Google Scholar]
- Hamari, J.; Sjöblom, M. What is eSports and why do people watch it? Internet Res. 2017, 27, 211–232. [Google Scholar] [CrossRef] [Green Version]
- Pizzo, A.D.; Baker, B.J.; Na, S.; Lee, M.A.; Kim, D.; Funk, D. eSport vs. sport: A comparison of spectator motives. Sport Mark. Q. 2018, 27, 108–123. [Google Scholar]
- Borland, J.; MacDonald, R. Demand for sport. Oxf. Rev. Econ. Policy 2003, 19, 478–502. [Google Scholar] [CrossRef]
- Szymanski, S. The economic design of sporting contests. J. Econ. Lit. 2003, 41, 1137–1187. [Google Scholar] [CrossRef]
- Tainsky, S.; Jasielec, M. Television viewership of out-of-market games in league markets: Traditional demand shifters and local team influence. J. Sport Manag. 2014, 28, 94–108. [Google Scholar]
- Wang, C.; Goossens, D.; Vandebroek, M. The Impact of the soccer schedule on TV viewership and stadium attendance: Evidence from the Belgian Pro League. J. Sport. Econ. 2018, 19, 82–112. [Google Scholar] [CrossRef] [Green Version]
- Rottenberg, S. The baseball players’ labor market. J. Political Econ. 1956, 64, 242–258. [Google Scholar] [CrossRef]
- Cox, A. Spectator demand, uncertainty of results, and public interest: Evidence from the English Premier League. J. Sport Econ. 2018, 19, 3–30. [Google Scholar] [CrossRef] [Green Version]
- Ryu, Y.; Kim, K.; Paik, J.W.; Cheong, Y. Determinants of audience demand for the televised professional baseball matches in Korea: An analysis of the post-season matches from 2008 to 2016. Int. J. Sport Mark. Spons. 2019, 20, 184–202. [Google Scholar] [CrossRef]
- Czarnitzki, D.; Stadtmann, G. Uncertainty of outcome versus reputation: Empirical evidence for the First German Football Division. Empir. Econ. 2002, 27, 101–112. [Google Scholar] [CrossRef]
- Hausman, J.A.; Leonard, G.K. Superstars in the National Basketball Association: Economic Value and Policy. J. Labor Econ. 1997, 15, 586–624. [Google Scholar] [CrossRef]
- Lewis, M.; Yoon, Y. An empirical examination of the development and impact of star power in major league baseball. J. Sport Econ. 2018, 19, 155–187. [Google Scholar] [CrossRef]
- Beckman, E.M.; Cai, W.; Esrock, R.M.; Lemke, R.J. Explaining Game-to-Game Ticket Sales for Major League Baseball Games Over Time. J. Sports Econ. 2012, 13, 536–553. [Google Scholar] [CrossRef]
- Lemke, R.J.; Leonard, M.; Tlhokwane, K. Estimating Attendance at Major League Baseball Games for the 2007 Season. J. Sports Econ. 2010, 11, 316–348. [Google Scholar] [CrossRef]
- Coates, D.; Humphreys, B.R. Novelty Effects of New Facilities on Attendance at Professional Sporting Events. Contemp. Econ. Policy 2005, 23, 436–455. [Google Scholar] [CrossRef] [Green Version]
- Funk, D.C.; Mahony, D.F.; Nakazawa, M.; Hirakawa, S. Development of the Sport Interest Inventory (SII): Implications for Measuring Unique Consumer Motives at Team Sporting Events. Int. J. Sports Mark. Spons. 2001, 3, 38–63. [Google Scholar] [CrossRef]
- Robinson, M.J.; Trail, G.T.; Dick, R.J.; Gillentine, A.J. Fans vs. spectators: An analysis of those who attend intercolle giate football games. Sport Mark. Q. 2005, 14, 43–53. [Google Scholar]
- Trail, G.T.; James, J.D. The motivation scale for sport consumption: Assessment of the scale’s psychometric proper ties. J. Sport Behav. 2001, 24, 108–127. [Google Scholar]
- Eastman, S.T.; Land, A.M. The Best of Both Worlds: Sports Fans Find Good Seats at the Bar. J. Sport Soc. Issues 1997, 21, 156–178. [Google Scholar] [CrossRef]
- Gantz, W. Reflections on communication and sport: On fanship and social relationships. Commun. Sport 1 2013, 1–2, 176–187. [Google Scholar] [CrossRef]
- Melnick, M.J. Searching for sociability in the stands: A theory of sports spectating. J. Sport Manag. 1993, 7, 44–60. [Google Scholar] [CrossRef]
- Wann, D.L. Understanding the positive social psychological benefits of sport team identification: The team identification-social psychological health model. Group Dyn. Theory Res. Pract. 2006, 10, 272–296. [Google Scholar] [CrossRef]
- Ko, M.; Choi, S.; Lee, J.; Lee, U.; Segev, A. Understanding mass interactions in online sports viewing: Chatting motives and usage patterns. ACM Trans. Comput. Hum. Interact. 2016, 13, 1–27. [Google Scholar] [CrossRef]
- Cunningham, N.R.; Eastin, M.S. Second Screen and Sports: A Structural Investigation Into Team Identification and Efficacy. Commun. Sport 2017, 5, 288–310. [Google Scholar] [CrossRef]
- Watanabe, N.M.; Xue, H.; Newman, J.I.; Yan, G. The Attention Economy and Esports: An Econometric Analysis of Twitch Viewership. J. Sport Manag. 2022, 36, 145–158. [Google Scholar] [CrossRef]
- Qian, T.Y.; Zhang, J.J.; Wang, J.J.; Hulland, J. Beyond the Game: Dimensions of Esports Online Spectator Demand. Commun. Sport 2020, 8, 825–851. [Google Scholar] [CrossRef] [Green Version]
- Van Dijck, J.; Poell, T. Understanding Social Media Logic. Media Commun. 2013, 1, 2–14. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Kou, G.; Peng, Y.; Chao, X.; Xiao, F.; Alsaadi, F.E. Effect of marketing messages and consumer engagement on economic performance: Evidence from Weibo. Internet Res. 2020, 30, 1565–1581. [Google Scholar] [CrossRef]
- He, W.; Zha, S.; Li, L. Social media competitive analysis and text mining: A case study in the pizza industry. Int. J. Inf. Manag. 2013, 33, 464–472. [Google Scholar] [CrossRef]
- Heinonen, K. Consumer activity in social media: Managerial approaches to consumers’ social media behavior. J. Consum. Behav. 2011, 10, 356–364. [Google Scholar] [CrossRef]
- Qian, T.Y.; Wang, J.J.; Zhang, J.J.; Lu, L.Z. It is in the game: Dimensions of esports online spectator motivation and development of a scale. Eur. Sport Manag. Q. 2020, 20, 458–479. [Google Scholar] [CrossRef]
- Featherman, M.S.; Valacich, J.S.; Wells, J.D. Is that authentic or artificial? Understanding consumer perceptions of risk in e-service encounters. Inf. Syst. J. 2006, 16, 107–134. [Google Scholar] [CrossRef]
- Cave, M.; Crandall, R.W. Sports rights and the broadcast industry. Econ. J. 2001, 111, 4–26. [Google Scholar] [CrossRef] [Green Version]
- Dietl, H.; Hasan, T. Pay-TV Versus Free-Tv: A Model of Sports Broadcasting Rights Sales. East. Econ. J. 2007, 33, 405–428. [Google Scholar] [CrossRef] [Green Version]
- Smith, A.; Stewart, R. The special features of sport: A critical revisit. Sport Manag. Rev. 2010, 13, 1–13. [Google Scholar] [CrossRef]
- Sutton, W.A.; Parrett, I. Marketing the core product in professional team sports in the United States. Sport Mark. Q. 1992, 1, 7–19. [Google Scholar]
- Stewart, R.; Smith, A. The special features of sport. Ann. Leis. Res. 1999, 2, 87–99. [Google Scholar] [CrossRef]
- Buraimo, B.; Simmons, R. Uncertainty of outcome or star quality? Television audience demand for English Premier League football. Int. J. Econ. Bus. 2015, 22, 449–469. [Google Scholar] [CrossRef]
Game | Game Type | Bilibili Channel | Bilibili Subscribers | Sample Period | Full-Length Matches | |
---|---|---|---|---|---|---|
League of Legends | Multiplayer Online Battle Arena (MOBAs) | League of Legends Live | 7,592,000 | 15 January 2018–22 May 2021 | League of Legends Pro League(LPL) | |
World Championship | ||||||
Mid-Season Cup (MSC) | ||||||
Mid-Season Invitational(MSI) | ||||||
Rift Rivals | ||||||
League of Legends | 2,411,000 | 6 September 2017–22 May 2021 | ||||
Overwatch | First-Person Shooters (FPS) | Overwatch Live | 660,000 | 10 February 2019–23 May 2021 | The Overwatch League (OWL) | |
Overwatch | 126,000 | 11 September 2018–20 May 2021 |
League of Legends | Overwatch | |||||||
---|---|---|---|---|---|---|---|---|
Mean | SD | Min | Max | Mean | SD | Min | Max | |
520,772 | 1,011,874 | 12,211 | 20,735,433 | 53,164 | 67,567.14 | 1151 | 860,857 | |
6707 | 12,714.71 | 290 | 304,700 | 976.10 | 1238.03 | 82 | 23,787 | |
1.90 | 6.26 | −15 | 17 | 0.16 | 9.02 | −17 | 25 | |
1.12 | 6.52 | −16 | 17 | 0.48 | 8.58 | −17 | 25 | |
5.82 | 5.54 | 0 | 32 | 10.57 | 8.26 | 0 | 38 | |
0.80 | 0.30 | 0.20 | 1 | 0.63 | 0.32 | 0.14 | 1 | |
8494 | 17,188.80 | 46 | 343,987 | 1295.73 | 1705.13 | 3 | 18,898 | |
N | 1337 | 749 |
League of Legends | Overwatch | |||||||
---|---|---|---|---|---|---|---|---|
Mean | SD | Min | Max | Mean | SD | Min | Max | |
273,914 | 737,324.10 | 184 | 20,735,433 | 38,715 | 84,316.89 | 925 | 2,478,910 | |
6473 | 18,963.26 | 8 | 554,856 | 886.10 | 1749.01 | 33 | 55,178 | |
2915 | 9910.10 | 0 | 343,987 | 747.40 | 1485.77 | 0 | 18,898 | |
0.27 | 0.44 | 0 | 1 | 0.52 | 0.50 | 0 | 1 | |
0.11 | 0.31 | 0 | 1 | 0.06 | 0.24 | 0 | 1 | |
N | 5833 | 1453 |
League of Legends | Overwatch | |||
---|---|---|---|---|
Views | Likes | Views | Likes | |
0.6572 *** (6.80) | 0.2722 ** (2.07) | 0.9225 *** (13.13) | 0.6917 *** (10.34) | |
0.0232 *** (4.61) | 0.0282 *** (3.99) | −0.0011 (−0.63) | −0.0031 (−1.61) | |
0.0188 *** (4.66) | 0.0206 *** (3.61) | −0.0020 (−0.82) | −0.0040 (−1.60) | |
−0.0053 ** (−2.12) | −0.0108 *** (−2.86) | 0.0001 (0.06) | 0.0042 (1.64) | |
0.1660 *** (3.48) | 0.4041 *** (5.30) | 0.1365 ** (2.07) | 0.1212 * (1.74) | |
Game-level Characteristics | Included | Included | Included | Included |
Video Specific Information | Included | Included | Included | Included |
Adjusted R-squared | 0.89 | 0.69 | 0.81 | 0.65 |
N | 1331 | 1331 | 463 | 463 |
League of Legends | Overwatch | |||
---|---|---|---|---|
Views | Likes | Views | Likes | |
0.7044 *** (42.06) | 0.5912 *** (33.69) | 0.4263 *** (9.24) | 0.3055 *** (8.18) | |
−1.3940 *** (−3.69) | 0.8206 * (1.95) | −2.4490 *** (−6.55) | −1.7820 *** (−5.51) | |
0.1241** (2.49) | −0.2540 *** (−4.038) | 0.3054 *** (4.51) | 0.1737 *** (3.04) | |
0.2713 *** (10.21) | 0.0769 ** (2.57) | 0.4707 *** (6.94) | 0.3008 *** (5.51) | |
Game-level Characteristics | Included | Included | Included | Included |
Video Specific Information | Included | Included | Included | Included |
Adjusted R-squared | 0.82 | 0.79 | 0.79 | 0.70 |
N | 5881 | 5881 | 1452 | 1452 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, F.; Wang, W.; Lai, W. The Social Impact from Danmu—Insights from Esports Online Videos. J. Theor. Appl. Electron. Commer. Res. 2023, 18, 441-456. https://doi.org/10.3390/jtaer18010023
Li F, Wang W, Lai W. The Social Impact from Danmu—Insights from Esports Online Videos. Journal of Theoretical and Applied Electronic Commerce Research. 2023; 18(1):441-456. https://doi.org/10.3390/jtaer18010023
Chicago/Turabian StyleLi, Fan, Wenche Wang, and Weiqing Lai. 2023. "The Social Impact from Danmu—Insights from Esports Online Videos" Journal of Theoretical and Applied Electronic Commerce Research 18, no. 1: 441-456. https://doi.org/10.3390/jtaer18010023
APA StyleLi, F., Wang, W., & Lai, W. (2023). The Social Impact from Danmu—Insights from Esports Online Videos. Journal of Theoretical and Applied Electronic Commerce Research, 18(1), 441-456. https://doi.org/10.3390/jtaer18010023