# How Do Consumer Fairness Concerns Affect an E-Commerce Platform’s Choice of Selling Scheme?

^{1}

^{2}

^{3}

^{*}

*J. Theor. Appl. Electron. Commer. Res.*

**2022**,

*17*(3), 1075-1106; https://doi.org/10.3390/jtaer17030055

## Abstract

**:**

## 1. Introduction

- (1)
- In the presence of consumer fairness concerns, what is the strategic selling scheme for an e-commerce platform?
- (2)
- Is the e-commerce platform more inclined to adopt a novel platform pricing scheme rather than a traditional wholesale pricing scheme, and, if so, under what conditions?
- (3)
- Which pricing scheme would be preferred by the upstream manufacturer?
- (4)
- How does the interaction between fairness concerns and an e-commerce platform’s selling scheme choice affect consumer surplus and social welfare?

## 2. Literature Review

#### 2.1. Fairness Concerns in Distribution Channel Management

#### 2.2. Selling Scheme Choice in Platform Retailing

## 3. Model

#### 3.1. Supply Chain Structure

#### 3.2. Consumer Behavior Analysis and Demand Functions

## 4. Analysis

#### 4.1. Wholesale Selling Scheme

**Lemma**

**1.**

#### 4.2. Agency Selling Scheme

**Lemma**

**2.**

**Proposition**

**1.**

- (a)
- The market demand ${D}_{a}^{*}$ decreases and the retail price ${p}_{a}^{*}$ increases with the platform fee $r$.
- (b)
- The profits of the manufacturer and the supply chain system decrease with the platform fee $r$. However, there exists a threshold value for the platform fee $\overline{r}$. If the platform fee is lower than the threshold value (i.e., $r<\overline{r}$), the profit of the platform increases with $r$, whereas, if the platform fee is higher than the threshold value (i.e., $r>\overline{r}$), the profit of the platform decreases with $r$.

## 5. Comparison

#### 5.1. Market Share

**Proposition**

**2.**

#### 5.2. Retail Price

**Proposition**

**3.**

#### 5.3. Profit

**Proposition**

**4.**

- (a)
- For a lower platform fee (i.e.,$\frac{2-\sqrt{2}}{8}<\lambda \le \frac{2-\sqrt{4}}{4}$),
- (1)
- If the fairness concern intensity is relatively low (i.e., $0<\lambda \le {\lambda}_{1}$), then${\pi}_{w}^{{p}^{*}}>{\pi}_{a}^{{p}^{*}}$;
- (2)
- If the fairness concern intensity is relatively high (i.e.,$\lambda >{\lambda}_{1}$), then${\pi}_{w}^{{p}^{*}}<{\pi}_{a}^{{p}^{*}}$.

- (b)
- For a higher platform fee (i.e.,$\frac{2+\sqrt{2}}{8}<\lambda \le \frac{2+\sqrt{4}}{4}$),
- (1)
- If the fairness concern intensity is relatively low (i.e.,$0\lambda \le {\lambda}_{2}$), then${\pi}_{w}^{{p}^{*}}<{\pi}_{a}^{{p}^{*}}$;
- (2)
- If the fairness concern intensity is relatively high (i.e.,$\lambda >{\lambda}_{2}$), then${\pi}_{w}^{{p}^{*}}>{\pi}_{a}^{{p}^{*}}$.

**Proposition**

**5.**

- (a)
- When the platform fee is relatively low (i.e.,$0<r\le \frac{2-\sqrt{2}}{4}$), then${\pi}_{a}^{{m}^{*}}>{\pi}_{w}^{{m}^{*}}$.
- (b)
- When the platform fee is relatively high (i.e.,$\frac{2+\sqrt{2}}{4}<r<$1), then${\pi}_{a}^{{m}^{*}}<{\pi}_{w}^{{m}^{*}}$.
- (c)
- When the platform fee is in the intermediate range (i.e.,$\frac{2-\sqrt{2}}{4}<r<\frac{2+\sqrt{2}}{4}$),
- (1)
- If the fairness concern intensity is sufficiently low (i.e.,$0<\lambda <{\lambda}_{3}$), then${\pi}_{a}^{{m}^{*}}>{\pi}_{w}^{{m}^{*}}$;
- (2)
- If the fairness concern intensity is sufficiently high (i.e.,$\lambda {\lambda}_{3}$), then${\pi}_{a}^{{m}^{*}}<{\pi}_{w}^{{m}^{*}}$.

**Proposition**

**6.**

- (a)
- For a lower platform fee (i.e.,$\frac{2-\sqrt{2}}{8}<r<\frac{2-\sqrt{2}}{4}$),
- (1)
- If the intensity of fairness concern is relatively low (i.e., $0<\lambda <max\left\{{\lambda}_{1},{\lambda}_{3}\right\}$), then the wholesale selling scheme is the dominant strategy for the whole supply chain;
- (2)
- If the intensity of fairness concern is relatively high (i.e., $\lambda >max\left\{{\lambda}_{1},{\lambda}_{3}\right\}$), then both the upstream manufacturer and the downstream platform prefer to choose the agency selling scheme.

- (b)
- For a higher platform fee (i.e.,$\frac{2+\sqrt{2}}{8}<r<\frac{2+\sqrt{2}}{4}$),
- (1)
- If the intensity of fairness concern is relatively low (i.e., $0<\lambda <max\left\{{\lambda}_{2},{\lambda}_{3}\right\}$), then the agency selling scheme is the dominant strategy for the whole supply chain;
- (2)
- If the intensity of fairness concern is relatively high (i.e., $\lambda >max\left\{{\lambda}_{2},{\lambda}_{3}\right\}$), then both the upstream manufacturer and the downstream platform prefer to adopt the wholesale selling scheme.

#### 5.4. Consumer Surplus and Social Welfare

**Proposition**

**7.**

## 6. Extensions

#### 6.1. Consumer Heterogeneity

#### 6.1.1. Wholesale Selling Scheme

**Lemma**

**3.**

**Corollary**

**1.**

#### 6.1.2. Agency Selling Scheme

**Lemma**

**4.**

**Proposition**

**8.**

- (a)
- $\frac{\partial {p}_{a}^{*}}{\partial \beta}<0$, $\frac{\partial {D}_{a}^{*}}{\partial \beta}<0$, and $\frac{\partial {\pi}_{a}^{{p}^{*}}}{\partial \beta}<0$.
- (b)
- If the fraction $\beta $ of the fairness-minded consumer is large (i.e., $\beta >\frac{\left(1-r\right)\left(\lambda +1\right)}{r\lambda}$), then $\frac{\partial {\pi}_{a}^{{m}^{*}}}{\partial \beta}>0$. However, if the fraction $\beta $ of the fairness-minded consumer is small (i.e., $\beta <\frac{\left(1-r\right)\left(\lambda +1\right)}{r\lambda}$), then $\frac{\partial {\pi}_{a}^{{m}^{*}}}{\partial \beta}<0$.

#### 6.1.3. Comparison

**Corollary**

**2.**

**Corollary**

**3.**

#### 6.2. Proportional Platform Fee

**Lemma**

**5.**

**Proposition**

**9.**

#### 6.3. Fairness Concern about the Manufacturer’s Profit

**Lemma**

**6.**

- (a)
- Under the wholesale selling scheme, the manufacturer charges the wholesale price ${w}^{*}=\frac{\lambda +1}{2\left(2\lambda +1\right)}$ and the platform determines the retail price ${p}_{w}^{*}=\frac{4\lambda +3}{4\left(2\lambda +1\right)}$. The market share is ${D}_{w}^{*}=\frac{1}{4}$. The profits of the manufacturer, platform, and supply chain system are ${\pi}_{w}^{{m}^{*}}=\frac{\lambda +1}{8\left(2\lambda +1\right)}$, ${\pi}_{w}^{{p}^{*}}=\frac{1}{16}$, and ${\pi}_{w}^{*}=\frac{4\lambda +3}{16\left(2\lambda +1\right)}$, respectively.
- (b)
- Under the agency selling scheme, the manufacturer charges the retail price ${p}_{a}=\frac{2\lambda r+r+1}{2\left(\lambda +1\right)}$. The market share is ${D}_{a}=\frac{1-r}{2\left(\lambda +1\right)}$. The optimal profits of the manufacturer, the platform, and the supply chain system are ${\pi}_{a}^{m*}=\frac{{\left(1-r\right)}^{2}}{4{\left(\lambda +1\right)}^{2}}$, ${\pi}_{a}^{p*}=\frac{r\left(1-r\right)}{2\left(\lambda +1\right)}$, and ${\pi}_{a}^{*}=\frac{\left(1-r\right)\left(2\lambda r+r+1\right)}{4{\left(\lambda +1\right)}^{2}}$, respectively.

#### 6.4. Endogenous Platform Fee

**Proposition**

**10.**

- (a)
- The optimal platform fee is ${r}_{E}=\frac{\eta \left(\lambda +1\right)}{2\left(2\lambda +1\right)}$.
- (b)
- For $0\le \eta \le 1$, the optimal platform fee ${r}_{E}$ increases with the bargaining power of the platform (i.e., $\frac{\partial {r}_{E}}{\partial \eta}>0$) and decreases with the intensity of consumer fairness concern (i.e., $\frac{\partial {r}_{E}}{\partial \lambda}<0$).

## 7. Discussion

## 8. Conclusions and Management Insights

#### 8.1. Conclusions

#### 8.2. Management Insights

#### 8.3. Future Research Directions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## Appendix A

**Proof of Lemma**

**1.**

**Proof of Lemma**

**2.**

**Proof of Proposition**

**1.**

- (a)
- For the market demand and the retail price, we have $\begin{array}{c}\frac{\partial {D}_{a}^{*}}{\partial r}=-\frac{2\lambda +1}{2\left(\lambda +1\right)}<0\end{array}$ and $\begin{array}{c}\frac{\partial {p}_{a}^{*}}{\partial r}=\frac{1}{2\left(\lambda +1\right)}>0\end{array}$.
- (b)
- For the profits of the manufacturer and supply chain system, we have $\begin{array}{c}\frac{\partial {\pi}_{a}^{m*}}{\partial r}=-\frac{\left(2\lambda +1\right)\left(1+\lambda -\left(2\lambda +1\right)r\right)}{2{(\lambda +1)}^{2}}\end{array}<0$ and $\begin{array}{c}\frac{\partial {\pi}_{a}^{*}}{\partial r}=-\frac{{\lambda}^{2}+\left(2r+1\right)\lambda +r}{2{(\lambda +1)}^{2}}<0\end{array}$. For the profit of the platform, we obtain that $\begin{array}{c}\frac{\partial {\pi}_{a}^{{p}^{*}}}{\partial r}=\frac{\lambda +1-2\left(2\lambda +1\right)r}{2\left(1+\lambda \right)}\end{array}$. If $\begin{array}{c}r\le \frac{\lambda +1}{2\left(2\lambda +1\right)}\end{array}$, then $\begin{array}{c}\frac{\partial {\pi}_{a}^{p*}}{\partial r}\ge 0\end{array}$. If $\begin{array}{c}\frac{\lambda +1}{2\left(2\lambda +1\right)}<r<\frac{\lambda +1}{2\lambda +1}\end{array}$, then $\begin{array}{c}\frac{\partial {\pi}_{a}^{p*}}{\partial r}<0\end{array}$. □

**Proof of Proposition**

**2.**

**Proof of Proposition**

**3.**

**Proof of Proposition**

**4.**

- (a)
- When $\begin{array}{c}\frac{2-\sqrt{2}}{8}<r\le \frac{2-\sqrt{2}}{4}\end{array}$, if $\begin{array}{c}0\lambda {\lambda}_{1}\end{array}$, then$\begin{array}{c}{\pi}_{w}^{p*}{\pi}_{a}^{p*}\end{array}$. Otherwise, $\begin{array}{c}{\pi}_{w}^{p*}<{\pi}_{a}^{p*}\end{array}$.
- (b)
- When $\begin{array}{c}\frac{2+\sqrt{2}}{8}<r\le \frac{2+\sqrt{2}}{4}\end{array}$, if $\begin{array}{c}0\lambda {\lambda}_{2}\end{array}$, then$\begin{array}{c}{\pi}_{w}^{p*}{\pi}_{a}^{p*}\end{array}$. Otherwise, $\begin{array}{c}{\pi}_{w}^{p*}>{\pi}_{a}^{p*}\end{array}$. □

**Proof of Proposition**

**5.**

- (a)
- When $\begin{array}{c}0<r\le \frac{2-\sqrt{2}}{4}\end{array}$, then $\begin{array}{c}{\pi}_{a}^{m*}>{\pi}_{w}^{m*}\end{array}$.
- (b)
- When $\begin{array}{c}\frac{2-\sqrt{2}}{4}<r\le \frac{2+\sqrt{2}}{4}\end{array}$, if $\begin{array}{c}0<\lambda <{\lambda}_{3}\end{array}$, then $\begin{array}{c}{\pi}_{a}^{m*}>{\pi}_{w}^{m*}\end{array}$. Otherwise, $\begin{array}{c}{\pi}_{a}^{m*}<{\pi}_{w}^{m*}.\end{array}$
- (c)
- When $\begin{array}{c}\frac{2+\sqrt{2}}{4}<r\le 1\end{array}$, then$\begin{array}{c}{\pi}_{a}^{m*}{\pi}_{w}^{m*}\end{array}$. □

**Proof of Proposition**

**6.**

**Proof of Proposition**

**7.**

**Proof of Lemma**

**3.**

**Proof of Corollary**

**1.**

**Proof of Lemma**

**4.**

**Proof of Proposition**

**8.**

- (a)
- $\begin{array}{c}\frac{\partial {p}_{a}^{*}}{\partial \beta}=-\frac{r\lambda}{2\left(\lambda +1\right)}<0\end{array}$, $\begin{array}{c}\frac{\partial {D}_{a}^{*}}{\partial \beta}=-\frac{r\lambda}{2\left(\lambda +1\right)}<0\end{array}$, and $\begin{array}{c}\frac{\partial {\pi}_{a}^{p*}}{\partial \beta}=-\frac{\lambda {r}^{2}}{2\left(\lambda +1\right)}<0\end{array}$.
- (b)
- Notice that $\begin{array}{c}\frac{\partial {\pi}_{a}^{m*}}{\partial \beta}=\frac{\beta r\lambda -\left(1-r\right)\left(1+\lambda \right)}{2{(1+\lambda )}^{2}}\end{array}$. When the fraction$\beta $ of the fairness-minded consumer is large (i.e., $\begin{array}{c}\beta >\frac{\left(1-r\right)\left(\lambda +1\right)}{r\lambda}\end{array}$), then $\begin{array}{c}\frac{\partial {\pi}_{a}^{m*}}{\partial \beta}>0\end{array}$. When the fraction $\beta $ of the fairness-minded consumer is small (i.e., $\begin{array}{c}\beta <\frac{\left(1-r\right)\left(\lambda +1\right)}{r\lambda}\end{array}$), then $\begin{array}{c}\frac{\partial {\pi}_{a}^{m*}}{\partial \beta}<0\end{array}$. □

**Proof of Corollary**

**2.**

**Proof of Corollary**

**3.**

**Proof of Lemma**

**5.**

**Proof of Proposition**

**9.**

**Proof of Lemma**

**6.**

**Proof of Proposition**

**10.**

## References

- Li, H.; Li, Z. Supplier encroachment in the supply chain in the e-commerce age: A systematic literature review. J. Theor. Appl. Electron. Commer. Res.
**2021**, 16, 2655–2671. [Google Scholar] [CrossRef] - Zhang, Y.; Xu, B. How should e-commerce platforms subsidize retailers with logistics constraints during an epidemic scenario? Considering power structure and altruistic preference. J. Theor. Appl. Electron. Commer. Res.
**2021**, 16, 1680–1701. [Google Scholar] [CrossRef] - Hao, L.; Tan, Y. Who wants consumers to be informed? Facilitating information disclosure in a distribution channel. Inf. Syst. Res.
**2019**, 30, 34–49. [Google Scholar] [CrossRef] - Chen, L.; Nan, G.; Li, M. Wholesale pricing or agency pricing on online retail platforms: The effects of customer loyalty. Int. J. Electron. Commer.
**2018**, 22, 576–608. [Google Scholar] [CrossRef] - Zhang, J.; Cao, Q.; He, X. Contract and product quality in platform selling. Eur. J. Oper. Res.
**2019**, 272, 928–944. [Google Scholar] [CrossRef] - Tan, Y.; Carrillo, J.E.; Cheng, H.K. The agency model for digital goods. Decis. Sci.
**2016**, 47, 628–660. [Google Scholar] [CrossRef] - Li, F.; Li, S.; Gu, J. Whether to delay the release of ebooks or not? An analysis of optimal publishing strategies for book publishers. J. Theor. Appl. Electron. Commer. Res.
**2019**, 14, 124–137. [Google Scholar] [CrossRef] [Green Version] - Hao, L.; Guo, H.; Easley, R. A mobile platform’s in-app advertising contract under agency pricing for app sales. Prod. Oper. Manag.
**2017**, 26, 189–202. [Google Scholar] [CrossRef] - Abhishek, V.; Jerath, K.; Zhang, Z. Agency selling or reselling? Channel structures in electronic retailing. Manag. Sci.
**2016**, 62, 2259–2280. [Google Scholar] [CrossRef] [Green Version] - Wei, J.; Lu, J.; Chen, W.; Xu, Z. Distribution contract analysis on e-platform by considering channel role and good complementarity. J. Theor. Appl. Electron. Commer. Res.
**2021**, 16, 445–465. [Google Scholar] [CrossRef] - Liu, J.; Ke, H. Firms’ preferences for retailing formats considering one manufacturer’s emission reduction investment. Int. J. Prod. Res.
**2021**, 59, 3062–3083. [Google Scholar] [CrossRef] - Liu, J.; Ke, H. Firms’ strategy analysis under different retailing formats considering emission reduction efficiency and low-carbon preference. Soft Comput.
**2021**, 25, 6691–6706. [Google Scholar] [CrossRef] - Chen, P.; Zhao, R.; Yan, Y.; Zhou, C. Promoting end-of-season product through online channel in an uncertain market. Eur. J. Oper. Res.
**2021**, 295, 935–948. [Google Scholar] [CrossRef] - Chen, L.; Nan, G.; Li, M.; Feng, B.; Liu, Q. Manufacturer’s online selling strategies under spillovers from online to offline sales. J. Oper. Res. Soc.
**2022**, 1–24. [Google Scholar] [CrossRef] - Fehr, E.; Schmidt, K.M. A theory of fairness, competition, and cooperation. Q. J. Econ.
**1999**, 114, 817–868. [Google Scholar] [CrossRef] - Li, K.J.; Jain, S. Behavior-based pricing: An analysis of the impact of peer-induced fairness. Manag. Sci.
**2016**, 62, 2705–2721. [Google Scholar] [CrossRef] - Guo, L. Inequity aversion and fair selling. J. Market. Res.
**2015**, 52, 77–89. [Google Scholar] [CrossRef] - Guo, X.; Jiang, B. Signaling through price and quality to consumers with fairness concerns. J. Market. Res.
**2016**, 53, 988–1000. [Google Scholar] [CrossRef] [Green Version] - Yi, Z.; Wang, Y.; Liu, Y.; Chen, Y.J. The impact of consumer fairness seeking on distribution channel selection: Direct selling vs. agent selling. Prod. Oper. Manag.
**2018**, 127, 1148–1167. [Google Scholar] [CrossRef] - Bolton, G.E.; Ockenfels, A. ERC: A theory of equity, reciprocity and competition. Am. Econ. Rev.
**2000**, 90, 166–193. [Google Scholar] [CrossRef] [Green Version] - Bolton, L.E.; Warlop, L.; Alba, J.W. Consumer perceptions of price (un)fairness. J. Consum. Res.
**2003**, 29, 474–491. [Google Scholar] [CrossRef] - Campbell, M.C. Perceptions of price unfairness: Antecedents and consequences. J. Market. Res.
**1999**, 36, 187–199. [Google Scholar] [CrossRef] - Bernestein, A. How Business Rates: By the Numbers. In Business Week; Bloomberg: Midtown Manhattan, NY, USA, 2000; pp. 148–149. [Google Scholar]
- Kahneman, D.; Knetsch, J.L.; Thaler, R. Fairness as a constraint on profit seeking: Entitlements in the Market. Am. Econ. Rev.
**1986**, 76, 728–741. [Google Scholar] - Xia, L.; Monroe, K.B.; Cox, J.L. The price is unfair! A conceptual framework of price fairness perceptions. J. Market.
**2004**, 68, 1–15. [Google Scholar] [CrossRef] - Rabin, M. Incorporating fairness into game theory and economics. Am. Econ. Rev.
**1993**, 83, 1281–1302. [Google Scholar] - Allender, W.J.; Liaukonyte, J.; Nasser, S.; Richards, T.J. Price fairness and strategic obfuscation. Market. Sci.
**2021**, 40, 122–146. [Google Scholar] [CrossRef] - Cohen, M.C.; Elmachtoub, A.N.; Lei, X. Price discrimination with fairness constraints. Manag. Sci.
**2022**. [Google Scholar] [CrossRef] - Thompson, N.T. Understanding Fairness Is the Key to Keeping Customers. 2013. Available online: https://hbr.org/2013/10/understanding-fairness-is-the-key-to-keeping-customers (accessed on 2 May 2022).
- Muth, J.F. Rational expectations and the theory of price movements. Econometrica
**1961**, 29, 315–335. [Google Scholar] [CrossRef] - Coase, R.H. Durability and monopoly. J. Law Econom.
**1972**, 15, 143–149. [Google Scholar] [CrossRef] - Su, X.; Zhang, F. On the value of commitment and availability guarantees when selling to strategic consumers. Manag. Sci.
**2009**, 55, 713–726. [Google Scholar] [CrossRef] [Green Version] - Su, X. Intertemporal pricing and consumer stockpiling. Oper. Res.
**2010**, 58, 1133–1147. [Google Scholar] [CrossRef] [Green Version] - Liu, Q. Stability and Bayesian consistency in two-sided markets. Am. Econ. Rev.
**2020**, 110, 2625–2666. [Google Scholar] [CrossRef] - Lenkey, S.L. Informed trading with a short-sale prohibition. Manag. Sci.
**2021**, 67, 1803–1824. [Google Scholar] [CrossRef] - Yang, M.; Zheng, Z.; Mookerjee, V. The race for online reputation: Implications for platforms, firms, and consumers. Inf. Syst. Res.
**2021**, 32, 1262–1280. [Google Scholar] [CrossRef] - Cui, T.H.; Raju, J.S.; Zhang, Z. Fairness and channel coordination. Manag. Sci.
**2007**, 53, 1303–1314. [Google Scholar] - Ho, T.H.; Su, X. Peer-induced fairness in games. Am. Econ. Rev.
**2009**, 99, 2022–2049. [Google Scholar] [CrossRef] [Green Version] - Harutyunyan, M.; Jiang, B.; Narasimhan, C. Competitive implications of consumer fairness concerns. SSRN 2017. Available online: https://ssrn.com/abstract=2835837 (accessed on 2 May 2022).
- Yu, Y.; Wang, S.; Liu, Z. Managing brand competition with consumer fairness concern via manufacturer incentive. Eur. J. Oper. Res.
**2022**, 300, 661–675. [Google Scholar] [CrossRef] - Huang, M.; Zhang, Y.; Fan, H. Research on retail channel decisions considering consumer’s fairness concern. RAIRO Oper. Res.
**2022**, 56, 23–47. [Google Scholar] [CrossRef] - Diao, W.; Harutyunyan, M.; Jiang, B. Consumer fairness concerns and dynamic pricing in a channel. Market. Sci.
**2022**. forthcomimg. [Google Scholar] [CrossRef] - Hao, L.; Fan, M. An analysis of pricing models in the electronic book market. MIS Q.
**2014**, 38, 1017–1032. [Google Scholar] [CrossRef] - Tan, Y.; Carrillo, J.E. Strategic analysis of the agency model for digital goods. Prod. Oper. Manag.
**2017**, 26, 724–741. [Google Scholar] [CrossRef] - Geng, X.; Tan, Y.; Wei, L. How add-on pricing interacts with distribution contracts. Prod. Oper. Manag.
**2018**, 27, 605–623. [Google Scholar] [CrossRef] - Yan, Y.; Zhao, R.; Liu, Z. Strategic introduction of the marketplace channel under spillovers from online to offline sales. Eur. J. Oper. Res.
**2018**, 267, 65–77. [Google Scholar] [CrossRef] - Ke, H.; Ye, S.; Mo, Y. A comparison between the wholesale model and the agency model with different launch strategies in the book supply chain. Electron. Commer. Res.
**2021**. [Google Scholar] [CrossRef] - Chen, C.; Duan, Y.; Li, G. Adoption of personalized pricing in a supply chain. Manag. Decis. Econ.
**2022**. [Google Scholar] [CrossRef] - Kwark, Y.; Chen, J.; Raghunathan, S. Platform or wholesale? A strategic tool for online retailers to benefit from third-party information. MIS Q.
**2017**, 41, 763–785. [Google Scholar] [CrossRef] - Rao, C.; Gao, M.; Wen, J.; Goh, M. Multi-attribute group decision making method with dual comprehensive clouds under information environment of dual uncertain Z-numbers. Inf. Sci.
**2022**, 602, 106–127. [Google Scholar] [CrossRef] - Hu, Q.; Lou, T.; Li, J.; Zuo, W.; Chen, X.; Ma, L. New practice of e-commerce platform: Evidence from two trade-in programs. J. Theor. Appl. Electron. Commer. Res.
**2022**, 17, 875–892. [Google Scholar] [CrossRef] - Wang, R.; Nan, G.; Chen, L.; Li, M. Channel integration choices and pricing strategies for competing dual-channel retailers. IEEE Trans. Eng. Manag.
**2020**, 69, 2260–2274. [Google Scholar] [CrossRef] - Liu, G.; Sun, J.; Liu, Y.; Zhang, J.; Tan, L. Do consumer fairness concerns soften price competition? The role of declining costs. SSRN Electron. J.
**2020**. [Google Scholar] [CrossRef] - He, P.; He, Y.; Xu, L.; Zhou, L. Online selling mode choice and pricing in an O2O tourism supply chain considering corporate social responsibility. Electron. Commer. Res. Appl.
**2019**, 38, 100894. [Google Scholar] [CrossRef] - Ye, F.; Zhang, L.; Li, Y. Strategic choice of sales channel and business model for the hotel supply chain. J. Retail.
**2018**, 94, 33–44. [Google Scholar] [CrossRef] - Jiang, B.; Jerath, K.; Srinivasan, K. Firm strategies in the “mid tail” of platform-based retailing. Market. Sci.
**2011**, 30, 757–775. [Google Scholar] [CrossRef] [Green Version] - Mantin, B.; Krishnan, H.; Dhar, T. The strategic role of third-party marketplaces in retailing. Prod. Oper. Manag.
**2014**, 23, 1937–1949. [Google Scholar] [CrossRef] - Ho, T.H.; Su, K.; Wu, Y. Distributional and peer-induced fairness in supply chain contract design. Prod. Oper. Manag.
**2014**, 23, 161–175. [Google Scholar] [CrossRef] [Green Version] - Zhang, P.; Xia, B.; Shi, V. The dual-channel retailer’s channel synergy strategy decision. J. Theor. Appl. Electron. Commer. Res.
**2021**, 16, 3184–3201. [Google Scholar] [CrossRef] - Scheer, L.K.; Kumar, N.; Steenkamp, J.E.M. Reactions to perceived inequity in U.S. and Dutch interorganizational relationships. Acad. Manag. J.
**2003**, 46, 303–316. [Google Scholar] - Chen, Y.; Koenigsberg, O.; Zhang, Z.J. Pay-as-you-wish pricing. Market. Sci.
**2017**, 36, 780–791. [Google Scholar] [CrossRef] - Yang, L.; Zheng, Y.; Fan, J.; Dong, S. Online pricing strategy with considering consumers’ fairness concerns. Asia Pac. J. Oper. Res.
**2022**, 39, 2140032. [Google Scholar] [CrossRef] - Chen, Y.; Cui, T.H. The benefit of uniform price for branded variants. Market. Sci.
**2013**, 32, 36–50. [Google Scholar] [CrossRef] [Green Version] - Li, Z.; Wang, D.; Nan, G.; Li, M. Optimal revenue model of a social networking service: Ad-sponsored, subscription-based, or hybrid? IEEE Trans. Eng. Manag.
**2022**. [Google Scholar] [CrossRef] - Hagiu, A.; Wright, J. Marketplace or Reseller? Manag. Sci.
**2015**, 61, 184–203. [Google Scholar] [CrossRef] [Green Version] - Li, Z.; Wang, J.; Perera, S.; Shi, J. Coordination of a supply chain with Nash bargaining fairness concerns. Transp. Res. Part E Logist. Transp. Rev.
**2022**, 159, 102627. [Google Scholar] [CrossRef]

Notations | Parameters |
---|---|

$i$ | Index of selling scheme, $i\in \left\{w,a\right\}$ |

$\theta $ | Reservation value, which is uniformly distributed between 0 and 1 |

$\lambda $ | Intensity of fairness concern |

$r$ | Platform fee |

${U}_{i}$ | Consumer utility depending on the platform’s selling scheme |

${D}_{i}$ | Consumer demand depending on the platform’s selling scheme |

${\pi}_{i}^{m}$ | Profit of manufacturer under different selling schemes |

${\pi}_{i}^{p}$ | Profit of platform under different selling schemes |

${\pi}_{i}$ | Profit of the supply chain system under different selling schemes |

$C{S}_{i}$ | Consumer surplus under different selling schemes |

$S{W}_{i}$ | Total social welfare under different selling schemes |

Decision Variables | |

$w$ | Wholesale price of product |

${p}_{i}$ | Retail price of product depending on the platform’s selling scheme |

Articles | Selling Scheme | Fairness Concern Type | Research Method |
---|---|---|---|

Zhang et al. [5] | Wholesale vs. Agency | Fairness-neutral | Nash equilibrium |

Yi et al. [19] | Agent vs. Direct | Consumer fairness concern | Rational expectation equilibrium |

Huang et al. [41] | Self-operated vs. Direct | Consumer fairness concern | Rational expectation equilibrium |

Kwark et al. [49] | Wholesale vs. Agency | Fairness-neutral | Nash equilibrium |

This paper | Wholesale vs. Agency | Consumer fairness concern | Rational expectation equilibrium |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Chen, L.; Nan, G.; Liu, Q.; Peng, J.; Ming, J.
How Do Consumer Fairness Concerns Affect an E-Commerce Platform’s Choice of Selling Scheme? *J. Theor. Appl. Electron. Commer. Res.* **2022**, *17*, 1075-1106.
https://doi.org/10.3390/jtaer17030055

**AMA Style**

Chen L, Nan G, Liu Q, Peng J, Ming J.
How Do Consumer Fairness Concerns Affect an E-Commerce Platform’s Choice of Selling Scheme? *Journal of Theoretical and Applied Electronic Commerce Research*. 2022; 17(3):1075-1106.
https://doi.org/10.3390/jtaer17030055

**Chicago/Turabian Style**

Chen, Lin, Guofang Nan, Qiurui Liu, Jin Peng, and Junren Ming.
2022. "How Do Consumer Fairness Concerns Affect an E-Commerce Platform’s Choice of Selling Scheme?" *Journal of Theoretical and Applied Electronic Commerce Research* 17, no. 3: 1075-1106.
https://doi.org/10.3390/jtaer17030055