Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = zero-formaldehyde emission

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2800 KiB  
Article
Ozone Formation at a Suburban Site in the Pearl River Delta Region, China: Role of Biogenic Volatile Organic Compounds
by Jun Wang, Yanli Zhang, Shaoxuan Xiao, Zhenfeng Wu and Xinming Wang
Atmosphere 2023, 14(4), 609; https://doi.org/10.3390/atmos14040609 - 23 Mar 2023
Cited by 8 | Viewed by 4433
Abstract
Ozone (O3) is becoming an increasingly concerning air quality problem in China, and previous O3 control strategies focused primarily on reducing anthropogenic volatile organic compounds (AVOCs), while neglecting the role of biogenic VOCs (BVOCs) in O3 formation. In this [...] Read more.
Ozone (O3) is becoming an increasingly concerning air quality problem in China, and previous O3 control strategies focused primarily on reducing anthropogenic volatile organic compounds (AVOCs), while neglecting the role of biogenic VOCs (BVOCs) in O3 formation. In this study, a field campaign was conducted at a suburban site in the Pearl River Delta region of China with high BVOC emissions from 29 August to 3 September 2020. An empirical kinetic modelling approach (EKMA) showed that VOC-limited was the dominant feature for O3 formation at the site. The relative incremental reactivity (RIR) values calculated by the box model (AtChem2-MCM) revealed that isoprene, formaldehyde, methylglyoxal and acetaldehyde had the highest RIRs. Simulation results from the box model also showed that isoprene played a substantial role in the formation of secondary carbonyls, especially contributing 32–92% to the formaldehyde production rate. Box model simulations further showed that during the O3 pollution period with high BVOC emissions, only near zero AVOC emissions could prevent O3 if the levels of nitrogen oxides (NOx) remained unchanged. The results suggest that the presence of high BVOC emissions can greatly impact efforts to control O3 by reducing AVOCs, particularly in regions with relatively high NOx levels (up to 51 ppbv in this study). In the long term, it may be essential to control NOx and choose low BVOC-emitting tree species in urban planning to address this issue, particularly as BVOC emissions are projected to become a more significant source of reactive VOCs with enhanced control of AVOCs. Full article
(This article belongs to the Special Issue Air Pollution in China (2nd Edition))
Show Figures

Figure 1

16 pages, 2692 KiB  
Article
Highly Branched Tannin-Tris(2-aminoethyl)amine-Urea Wood Adhesives
by Bengang Zhang, Xinyi Chen, Antonio Pizzi, Mathieu Petrissans, Stephane Dumarcay, Anelie Petrissans, Xiaojian Zhou, Guanben Du, Baptiste Colin and Xuedong Xi
Polymers 2023, 15(4), 890; https://doi.org/10.3390/polym15040890 - 10 Feb 2023
Cited by 14 | Viewed by 2628
Abstract
Condensed tannin copolymerized with hyperbranched tris(2-aminoethyl)amine-urea formed by amine-amido deamination yields a particleboard thermosetting adhesive without any aldehydes satisfying the requirements of relevant standards for the particleboard internal bond strength. The tannin–triamine–urea cures well at 180 °C, a relatively low temperature for today’s [...] Read more.
Condensed tannin copolymerized with hyperbranched tris(2-aminoethyl)amine-urea formed by amine-amido deamination yields a particleboard thermosetting adhesive without any aldehydes satisfying the requirements of relevant standards for the particleboard internal bond strength. The tannin–triamine–urea cures well at 180 °C, a relatively low temperature for today’s particleboard hot pressing. As aldehydes were not used, the formaldehyde emission was found to be zero, not even in traces due to the heating of wood. The effect is ascribed to the presence of many reactive sites, such as amide, amino, and phenolic groups belonging to the three reagents used. The tannin appears to function as an additional cross-linking agent, almost a nucleating agent, for the triamine–urea hyperbranched oligomers. Chemical analysis by MALDI ToF and 13C NMR has shown that the predominant cross-linking reaction is that of the substitution of the tannin phenolic hydroxyls by the amino groups of the triamine. The reaction of tannin with the still-free amide groups of urea is rather rare, but it may occur with the rarer tannin flavonoid units in which the heterocyclic ring is opened. Due to the temperature gradient between the surfaces and the board core in the particleboard during hot pressing, the type and the relative balance of covalent and ionic bonds in the resin structure may differ in the surfaces and the board core. Full article
(This article belongs to the Section Circular and Green Sustainable Polymer Science)
Show Figures

Graphical abstract

15 pages, 8253 KiB  
Article
A Comparative Study of Several Properties of Plywood Bonded with Virgin and Recycled LDPE Films
by Pavlo Bekhta, Antonio Pizzi, Iryna Kusniak, Nataliya Bekhta, Orest Chernetskyi and Arif Nuryawan
Materials 2022, 15(14), 4942; https://doi.org/10.3390/ma15144942 - 15 Jul 2022
Cited by 12 | Viewed by 2937
Abstract
In this work, to better understand the bonding process of plastic plywood panels, the effects of recycled low-density polyethylene (rLDPE) film of three thicknesses (50, 100, and 150 µm) and veneers of four various wood species (beech, birch, hornbeam, and poplar) on the [...] Read more.
In this work, to better understand the bonding process of plastic plywood panels, the effects of recycled low-density polyethylene (rLDPE) film of three thicknesses (50, 100, and 150 µm) and veneers of four various wood species (beech, birch, hornbeam, and poplar) on the properties of panels were studied. The obtained properties were also compared with the properties of plywood panels bonded by virgin low-density polyethylene (LDPE) film. The results showed that properties of plywood samples bonded with rLDPE and virgin LDPE films differ insignificantly. Samples bonded with rLDPE film demonstrated satisfactory physical and mechanical properties. It was also established that the best mechanical properties of plywood are provided by beech veneer and the lowest by poplar veneer. However, poplar plywood had the best water absorption and swelling thickness, and the bonding strength at the level of birch and hornbeam plywood. The properties of rLDPE-bonded plywood improved with increasing the thickness of the film. The panels bonded with rLDPE film had a close-to-zero formaldehyde content (0.01–0.10 mg/m2·h) and reached the super E0 emission class that allows for defining the laboratory-manufactured plastic-bonded plywood as an eco-friendly composite. Full article
(This article belongs to the Special Issue Advances in Polymer Blends and Composites)
Show Figures

Figure 1

19 pages, 2774 KiB  
Article
Influence of Lignin Content and Pressing Time on Plywood Properties Bonded with Cold-Setting Adhesive Based on Poly (Vinyl Alcohol), Lignin, and Hexamine
by Muhammad Adly Rahandi Lubis, Ahmad Labib, Sudarmanto, Fazhar Akbar, Arif Nuryawan, Petar Antov, Lubos Kristak, Antonios Nikolaos Papadopoulos and Antonio Pizzi
Polymers 2022, 14(10), 2111; https://doi.org/10.3390/polym14102111 - 22 May 2022
Cited by 41 | Viewed by 4593
Abstract
The sustainability, performance, and cost of production in the plywood industry depend on wood adhesives and the hot-pressing process. In this study, a cold-setting plywood adhesive was developed based on polyvinyl alcohol (PVOH), high-purity lignin, and hexamine. The influence of lignin content (10%, [...] Read more.
The sustainability, performance, and cost of production in the plywood industry depend on wood adhesives and the hot-pressing process. In this study, a cold-setting plywood adhesive was developed based on polyvinyl alcohol (PVOH), high-purity lignin, and hexamine. The influence of lignin content (10%, 15%, and 20%) and cold-pressing time (3, 6, 12, and 24 h) on cohesion, adhesion, and formaldehyde emission of plywood were investigated through physical, chemical, thermal, and mechanical analyses. The increased lignin addition level lowered the solids content, which resulted in reduced average viscosity of the adhesive. As a result, the cohesion strength of the adhesive formulation with 10% lignin addition was greater than those of 15% and 20% lignin content. Markedly, the adhesive formulation containing a 15% lignin addition level exhibited superior thermo-mechanical properties than the blends with 10% and 20% lignin content. This study showed that 10% and 15% lignin content in the adhesive resulted in better cohesion strength than that with 20% lignin content. However, statistical analysis revealed that the addition of 20% lignin in the adhesive and using a cold-pressing time of 24 h could produce plywood that was comparable to the control polyurethane resins, i.e., dry tensile shear strength (TSS) value of 0.95 MPa, modulus of rupture (MOR) ranging from 35.8 MPa, modulus of elasticity (MOE) values varying from 3980 MPa, and close-to-zero formaldehyde emission (FE) of 0.1 mg/L, which meets the strictest emission standards. This study demonstrated the feasibility of fabricating eco-friendly plywood bonded with PVOH–lignin–hexamine-based adhesive using cold pressing as an alternative to conventional plywood. Full article
(This article belongs to the Collection Wood Composites)
Show Figures

Figure 1

15 pages, 4825 KiB  
Article
Study on the Effect of an Intermittent Ventilation Strategy on Controlling Formaldehyde Concentrations in Office Rooms
by Baoping Xu, Yuekang Liu, Yanzhe Dou, Ling Hao, Xi Wang and Jianyin Xiong
Atmosphere 2022, 13(1), 102; https://doi.org/10.3390/atmos13010102 - 9 Jan 2022
Cited by 8 | Viewed by 2598
Abstract
Material emission and ventilation are two aspects influencing indoor air quality. In this study, a model predictive control (MPC) strategy is proposed for intermittent ventilation system in office buildings, to achieve a healthy indoor environment. The strategy is based on a dynamic model [...] Read more.
Material emission and ventilation are two aspects influencing indoor air quality. In this study, a model predictive control (MPC) strategy is proposed for intermittent ventilation system in office buildings, to achieve a healthy indoor environment. The strategy is based on a dynamic model for predicting emissions of volatile organic compounds (VOCs) from materials. The key parameters of formaldehyde from panel furniture in the model are obtained by an improved C-history method and large-scale chamber experiments. The effectiveness of the determined key parameters is validated, which are then used to predict the formaldehyde concentration variation and the pre-ventilation time in a typical office room. In addition, the influence of some main factors (i.e., vacant time, loading ratio, air change rate) on the pre-ventilation time is analyzed. Results indicate that the pre-ventilation time of the intermittent ventilation system ranges from several minutes to several hours. The pre-ventilation time decreases exponentially with the increase in the vacant time, the air change rate, and with the decrease in the loading ratio. When the loading ratio of the furniture is 0.30 m2/m3 and the vacant time is 100 days, the required pre-ventilation time approaches zero. Results further reveal that an air change rate of 2 h−1 is the most effective means for rapid removal of indoor formaldehyde for the cases studied. The proposed strategy should be helpful for achieving effective indoor pollution control. Full article
(This article belongs to the Special Issue Air Quality Management)
Show Figures

Figure 1

21 pages, 4414 KiB  
Article
Properties of Eco-Friendly Particleboards Bonded with Lignosulfonate-Urea-Formaldehyde Adhesives and pMDI as a Crosslinker
by Pavlo Bekhta, Gregory Noshchenko, Roman Réh, Lubos Kristak, Ján Sedliačik, Petar Antov, Radosław Mirski and Viktor Savov
Materials 2021, 14(17), 4875; https://doi.org/10.3390/ma14174875 - 27 Aug 2021
Cited by 65 | Viewed by 5628
Abstract
The purpose of this study was to evaluate the feasibility of using magnesium and sodium lignosulfonates (LS) in the production of particleboards, used pure and in mixtures with urea-formaldehyde (UF) resin. Polymeric 4,4′-diphenylmethane diisocyanate (pMDI) was used as a crosslinker. In order to [...] Read more.
The purpose of this study was to evaluate the feasibility of using magnesium and sodium lignosulfonates (LS) in the production of particleboards, used pure and in mixtures with urea-formaldehyde (UF) resin. Polymeric 4,4′-diphenylmethane diisocyanate (pMDI) was used as a crosslinker. In order to evaluate the effect of gradual replacement of UF by magnesium lignosulfonate (MgLS) or sodium lignosulfonate (NaLS) on the physical and mechanical properties, boards were manufactured in the laboratory with LS content varying from 0% to 100%. The effect of LS on the pH of lignosulfonate-urea-formaldehyde (LS-UF) adhesive compositions was also investigated. It was found that LS can be effectively used to adjust the pH of uncured and cured LS-UF formulations. Particleboards bonded with LS-UF adhesive formulations, comprising up to 30% LS, exhibited similar properties when compared to boards bonded with UF adhesive. The replacement of UF by both LS types substantially deteriorated the water absorption and thickness swelling of boards. In general, NaLS-UF-bonded boards had a lower formaldehyde content (FC) than MgLS-UF and UF-bonded boards as control. It was observed that in the process of manufacturing boards using LS adhesives, increasing the proportion of pMDI in the adhesive composition can significantly improve the mechanical properties of the boards. Overall, the boards fabricated using pure UF adhesives exhibited much better mechanical properties than boards bonded with LS adhesives. Markedly, the boards based on LS adhesives were characterised by a much lower FC than the UF-bonded boards. In the LS-bonded boards, the FC is lower by 91.1% and 56.9%, respectively, compared to the UF-bonded boards. The boards bonded with LS and pMDI had a close-to-zero FC and reached the super E0 emission class (≤1.5 mg/100 g) that allows for defining the laboratory-manufactured particleboards as eco-friendly composites. Full article
(This article belongs to the Special Issue Advanced Eco-friendly Wood-Based Composites)
Show Figures

Figure 1

14 pages, 1533 KiB  
Article
Eco-Friendly Fiberboard Panels from Recycled Fibers Bonded with Calcium Lignosulfonate
by Petar Antov, L’uboš Krišt’ák, Roman Réh, Viktor Savov and Antonios N. Papadopoulos
Polymers 2021, 13(4), 639; https://doi.org/10.3390/polym13040639 - 21 Feb 2021
Cited by 59 | Viewed by 7010
Abstract
The potential of using residual softwood fibers from the pulp and paper industry for producing eco-friendly, zero-formaldehyde fiberboard panels, bonded with calcium lignosulfonate (CLS) as a lignin-based, formaldehyde free adhesive, was investigated in this work. Fiberboard panels were manufactured in the laboratory by [...] Read more.
The potential of using residual softwood fibers from the pulp and paper industry for producing eco-friendly, zero-formaldehyde fiberboard panels, bonded with calcium lignosulfonate (CLS) as a lignin-based, formaldehyde free adhesive, was investigated in this work. Fiberboard panels were manufactured in the laboratory by applying CLS addition content ranging from 8% to 14% (on the dry fibers). The physical and mechanical properties of the developed composites, i.e., water absorption (WA), thickness swelling (TS), modulus of elasticity (MOE), bending strength (MOR), as well as the free formaldehyde emission, were evaluated according to the European norms. In general, only the composites, developed with 14% CLS content, exhibited MOE and MOR values, comparable with the standard requirements for medium-density fiberboards (MDF) for use in dry conditions. All laboratory-produced composites demonstrated significantly deteriorated moisture-related properties, i.e., WA (24 h) and TS (24 h), which is a major drawback. Noticeably, the fiberboards produced had a close-to-zero formaldehyde content, reaching the super E0 class (≤1.5 mg/100 g), with values, ranging from 0.8 mg/100 g to 1.1 mg/100 g, i.e., equivalent to formaldehyde emission of natural wood. The amount of CLS adhesive had no significant effect on formaldehyde content. Full article
(This article belongs to the Special Issue Advances in Wood Composites IV)
Show Figures

Figure 1

13 pages, 2158 KiB  
Article
Eco-Friendly, High-Density Fiberboards Bonded with Urea-Formaldehyde and Ammonium Lignosulfonate
by Petar Antov, Viktor Savov, Ľuboš Krišťák, Roman Réh and George I. Mantanis
Polymers 2021, 13(2), 220; https://doi.org/10.3390/polym13020220 - 10 Jan 2021
Cited by 77 | Viewed by 6587
Abstract
The potential of producing eco-friendly, formaldehyde-free, high-density fiberboard (HDF) panels from hardwood fibers bonded with urea-formaldehyde (UF) resin and a novel ammonium lignosulfonate (ALS) is investigated in this paper. HDF panels were fabricated in the laboratory by applying a very low UF gluing [...] Read more.
The potential of producing eco-friendly, formaldehyde-free, high-density fiberboard (HDF) panels from hardwood fibers bonded with urea-formaldehyde (UF) resin and a novel ammonium lignosulfonate (ALS) is investigated in this paper. HDF panels were fabricated in the laboratory by applying a very low UF gluing factor (3%) and ALS content varying from 6% to 10% (based on the dry fibers). The physical and mechanical properties of the fiberboards, such as water absorption (WA), thickness swelling (TS), modulus of elasticity (MOE), bending strength (MOR), internal bond strength (IB), as well as formaldehyde content, were determined in accordance with the corresponding European standards. Overall, the HDF panels exhibited very satisfactory physical and mechanical properties, fully complying with the standard requirements of HDF for use in load-bearing applications in humid conditions. Markedly, the formaldehyde content of the laboratory fabricated panels was extremely low, ranging between 0.7–1.0 mg/100 g, which is, in fact, equivalent to the formaldehyde release of natural wood. Full article
(This article belongs to the Special Issue New Challenges in Wood and Wood-Based Materials)
Show Figures

Graphical abstract

Back to TopTop