Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = yarn mass parameters

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 5548 KiB  
Article
Analysis of the Impact of Fabric Surface Profiles on the Electrical Conductivity of Woven Fabrics
by Ayalew Gebremariam, Magdalena Tokarska and Nawar Kadi
Materials 2025, 18(11), 2456; https://doi.org/10.3390/ma18112456 - 23 May 2025
Viewed by 504
Abstract
The surface profile and structural alignment of fibers and yarns in fabrics are critical factors affecting the electrical properties of conductive textile surfaces. This study aimed to investigate the impact of fabric surface roughness and the geometrical parameters of woven fabrics on their [...] Read more.
The surface profile and structural alignment of fibers and yarns in fabrics are critical factors affecting the electrical properties of conductive textile surfaces. This study aimed to investigate the impact of fabric surface roughness and the geometrical parameters of woven fabrics on their electrical resistance properties. Surface roughness was assessed using the MicroSpy® Profile profilometer FRT (Fries Research & Technology) Metrology™, while electrical resistance was evaluated using the Van der Pauw method. The findings indicate that rougher fabric surfaces exhibit higher electrical resistance due to surface irregularities and lower yarn compactness. In contrast, smoother fabrics improve conductivity by enhancing surface uniformity and yarn contact. Fabric density, particularly weft density, governs the structural alignment of yarns. A 35% increase in weft density (W19–W27) resulted in a 13–15% reduction in resistance, confirming that denser fabrics facilitate current flow. Higher weft density also increases directional resistance differences, enhancing anisotropic behavior. Angular distribution analysis showed lower resistance and greater anisotropy at perpendicular orientations (0° and 180°, the weft direction; 90° and 270°, the warp direction), while diagonal directions (45°, 135°, 225°, and 315°) exhibited higher resistance. Surface roughness further hindered current flow, whereas increased weft density and surface mass reduced resistance and improved the directional dependencies of the electrical resistances. This analysis was conducted based on research using woven fabrics produced from silver-plated polyamide yarns (Shieldex® 117/17 HCB). These insights support the optimization of these conductive fabrics for smart textiles, wearable sensors, and e-textiles. Fabric variants W19 and W21, with lower resistance variability and better isotropic behavior under the S electrode arrangement, could be proposed as suitable materials for integration into compact sensing systems like heart rate or bio-signal monitors. Full article
Show Figures

Figure 1

24 pages, 34967 KiB  
Article
The Behavior of Glass Fiber Composites under Low Velocity Impacts
by Iulian Păduraru, George Ghiocel Ojoc, Horia Petrescu, Iulia Graur, Cătălin Pîrvu and Lorena Deleanu
Polymers 2023, 15(23), 4549; https://doi.org/10.3390/polym15234549 - 27 Nov 2023
Cited by 4 | Viewed by 2523
Abstract
This paper presents experimental results on the behavior of a class of glass fiber composites under low velocity impacts, in order to analyze their usage in designing low velocity impact-resistant components in car and marine industries. Also, a finite element model at the [...] Read more.
This paper presents experimental results on the behavior of a class of glass fiber composites under low velocity impacts, in order to analyze their usage in designing low velocity impact-resistant components in car and marine industries. Also, a finite element model at the meso level (considering yarn as a compact, homogenous and isotropic material) was run with the help of Ansys Explicit Dynamics in order to point out the stages of the failure and the equivalent stress distribution on the main yarns in different layers of the composite. The composites were manufactured at laboratory scale via the laying-up and pressing method, using a quadriaxial glass fiber fabric (0°/+45°/90°/−45°) supplied by Castro Composites (Pontevedra, Spain) and an epoxy resin. The resin was a two-component resin (Biresin® CR82 and hardener CH80-2) supplied by Sika Group (Bludenz, Austria). The mass ratio for the fabric and panel was kept in the range of 0.70–0.77. The variables for this research were as follows: the number of layers of glass fiber fabric, the impact velocity (2–4 m/s, corresponding to an impact energy of 11–45 J, respectively) and the diameter of the hemispherical impactor (Φ10 mm and Φ20 mm) made of hardened steel. The tests were performed on an Instron CEAST 9340 test machine, and at least three tests with close results are presented. We investigated the influence of the test parameters on the maximum force (Fmax) measured during impact, the time to Fmax and the duration of impact, tf, all considered when the force is falling to zero again. Scanning electron microscopy and photography were used for discussing the failure processes at the fiber (micro) and panel (macro) level. At a velocity impact of 2 m/s (corresponding to an impact energy of 11 J), even the thinner panels (with two layers of quadriaxial glass fiber fabric, 1.64 mm thickness and a surface density of 3.51 kg/m2) had only partial penetration (damages on the panel face, without damage on panel back), but at a velocity impact of 4 m/s (corresponding to an impact energy of 45 J), only composite panels with six layers of quadriaxial fabric (5.25 mm thickness and a surface density of 9.89 kg/m2) presented back faces with only micro-exfoliated spots of the matrix for tests with both impactors. These results encourage the continuation of research on actual components for car and naval industries subjected to low velocity impacts. Full article
(This article belongs to the Special Issue Advances in Functional Hybrid Polymeric Composites)
Show Figures

Figure 1

17 pages, 4767 KiB  
Article
Production of Long Hemp Fibers Using the Flax Value Chain
by Lola Pinsard, Nathalie Revol, Henri Pomikal, Emmanuel De Luycker and Pierre Ouagne
Fibers 2023, 11(5), 38; https://doi.org/10.3390/fib11050038 - 28 Apr 2023
Cited by 9 | Viewed by 4929
Abstract
Hemp is finding a strong renewal of interest in the production of fine fibers for garment textiles. This resource of long-line fibers would come as a complement to the highly demanded flax fibers, whose large production in the north-west of Europe cannot be [...] Read more.
Hemp is finding a strong renewal of interest in the production of fine fibers for garment textiles. This resource of long-line fibers would come as a complement to the highly demanded flax fibers, whose large production in the north-west of Europe cannot be extended. In Normandy, where a complete industrial value chain exists for flax, it is intended to adapt it to hemp, and this was demonstrated from the field to the scutched fibers with a complete value chain. In this region, early harvesting is necessary to leave enough time for dew-retting and permit dry storage of stems before mid-September. An early-flowering variety (USO-31) was harvested using dedicated hemp equipment to obtain a 1 m parallel and aligned windrow that can be further processed by flax equipment. The scutching process as well as the fiber’s morphological and mechanical properties were particularly studied. Adapted scutching process parameters with reduced advancing speed and beating turbine velocity led to long fiber yields of about 18% of the stem mass. Stem yields were reaching about 6 tons/ha leading to a production of 1.1 tons/ha of long fibers. The tensile properties of the long fibers were highly sufficient for textile applications, and their thickness after hackling was in the range suitable for the production of fine yarns. Compared to other crops grown in Normandy, the hemp as produced in this 2020 case study provides good incomes to the farmer, higher than traditional crops such as wheat or barley, and the results of this study should encourage farmers to grow hemp for textile purposes. Full article
Show Figures

Graphical abstract

37 pages, 16759 KiB  
Article
Intelligent Computer Vision System for Analysis and Characterization of Yarn Quality
by Filipe Pereira, Alexandre Macedo, Leandro Pinto, Filomena Soares, Rosa Vasconcelos, José Machado and Vítor Carvalho
Electronics 2023, 12(1), 236; https://doi.org/10.3390/electronics12010236 - 3 Jan 2023
Cited by 10 | Viewed by 4439
Abstract
The quality of yarn is essential in the control of the fabrics processes. There is some commercial equipment that measures the quality of yarn based on sensors, of different types, used for collecting data about some textile yarn characteristic parameters. The irregularity of [...] Read more.
The quality of yarn is essential in the control of the fabrics processes. There is some commercial equipment that measures the quality of yarn based on sensors, of different types, used for collecting data about some textile yarn characteristic parameters. The irregularity of the textile thread influences its physical properties/characteristics and there may be a possibility of a break in the textile thread during the fabric manufacturing process. This can contribute to the occurrence of unwanted patterns in fabrics that deteriorate their quality. The existing equipment, for the above-mentioned purpose, is characterized by its high size and cost, and for allowing the analysis of only few yarn quality parameters. The main findings/results of the study are the yarn analysis method as well as the developed algorithm, which allows the analysis of defects in a more precise way. Thus, this paper presents the development and results obtained with the design of a mechatronic prototype integrating a computer vision system that allows, among other parameters, the analysis and classification, in real time, of the hairs of the yarn using artificial intelligence techniques. The system also determines other characteristics inherent to the yarn quality analysis, such as: linear mass, diameter, volume, twist orientation, twist step, average mass deviation, coefficient of variation, hairiness coefficient, average hairiness deviation, and standard hairiness deviation, as well as performing spectral analysis. A comparison of the obtained results with the designed system and a commercial equipment was performed validating the undertaken methodology. Full article
Show Figures

Figure 1

18 pages, 12036 KiB  
Article
Material and Structural Functionalization of Knitted Fabrics for Sportswear
by Ivana Salopek Čubrić, Vesna Marija Potočić Matković, Željka Pavlović and Alenka Pavko Čuden
Materials 2022, 15(9), 3306; https://doi.org/10.3390/ma15093306 - 5 May 2022
Cited by 16 | Viewed by 5022
Abstract
Comfort is an important quality criterion, especially for sportswear. It influences well-being, performance and efficiency. The necessary dissipation of heat and air flow, at high metabolic rates, must be designed and planned in advance. The influence of structure, density, mass and thickness of [...] Read more.
Comfort is an important quality criterion, especially for sportswear. It influences well-being, performance and efficiency. The necessary dissipation of heat and air flow, at high metabolic rates, must be designed and planned in advance. The influence of structure, density, mass and thickness of fabric were considered as well as yarn material composition, yarn linear density, yarn evenness and yarn hairiness. The influence of the mentioned parameters on thermal properties and air permeability was calculated. From the correlation analysis, it can be concluded that yarn’s linear density, yarn short fibers hairiness, and mass per unit area of knitted fabric has the greatest impact on heat resistance. The yarn linear density, the yarn hairiness of the longer protruding fibers, and the thickness of the knitted fabric have the greatest impact on air permeability. A statistically significant model of multiple linear regression equations was offered to predict the thermal comfort of knitted fabric. Full article
(This article belongs to the Special Issue Advances in Thermal and Mechanical Properties of Polymeric Materials)
Show Figures

Graphical abstract

13 pages, 4477 KiB  
Article
Accelerated Degradation of Poly(lactide acid)/Poly(hydroxybutyrate) (PLA/PHB) Yarns/Fabrics by UV and O2 Exposure in South China Seawater
by Qi Bao, Wingho Wong, Shirui Liu and Xiaoming Tao
Polymers 2022, 14(6), 1216; https://doi.org/10.3390/polym14061216 - 17 Mar 2022
Cited by 20 | Viewed by 3282
Abstract
Marine plastic pollution is emerging as a potential hazard to global ecosystems and human health. Micro-fibers derived from synthetic textiles contribute a considerable proportion of plastic debris. Bio-polymers/bio-plastics have been proposed for the application of apparel products, yet their degradability, fate, durability and [...] Read more.
Marine plastic pollution is emerging as a potential hazard to global ecosystems and human health. Micro-fibers derived from synthetic textiles contribute a considerable proportion of plastic debris. Bio-polymers/bio-plastics have been proposed for the application of apparel products, yet their degradability, fate, durability and related environmental parameters are still elusive and need further exploration. Herein, we report the degradation behavior of poly(lactide acid)/poly(hydroxybutyrate) (PLA/PHB) fabrics, made from PLA/PHB multi-filament yarns, in subtropics marine seawater. The degradation experiments were performed under various parallel conditions including static seawater, aerobic seawater in dark box, aerobic seawater under sunlight, static seawater under ultra-violet light and aerobic seawater under ultra-violet light. Continuous mass loss of PLA/PHB fabrics as the immersion time in the seawater increased was confirmed. The hydrolysis rate of PLA/PHB fabrics accelerated in the presence of UV light and dissolved oxygen in the seawater. Moreover, the tensile strength of the PLA/PHB yarns dropped rapidly by 38.54–68.70% in spite of the mass loss percentage being from 9.57% to 14.48% after 2 weeks’ immersion. All the PLA/PHB fabrics after two weeks’ immersion exhibited similar ATR-IR spectra. Therefore, the degradability of PLA/PHB fabrics, in the marine surface water under the synergistic destructive effect of seawater, UV and dissolved oxygen, provides a pathway for more sustainable textile fibers and apparel products. Full article
(This article belongs to the Special Issue Durability and Degradation of Polymeric Materials)
Show Figures

Figure 1

13 pages, 1016 KiB  
Article
Influential Parameters of Starching Process on Mechanical Properties of Yarns Intended for Multifunctional Woven Fabrics for Thermal Protective Clothing
by Ivana Schwarz, Stana Kovačević and Ivana Vitlov
Polymers 2021, 13(1), 73; https://doi.org/10.3390/polym13010073 - 27 Dec 2020
Cited by 5 | Viewed by 2530
Abstract
The investigation of influential parameters of the starching process on mechanical properties of yarns intended for multifunctional woven fabrics for thermal protective clothing was performed on four different yarn samples starched on an innovative starching machine, adapted to industrial starching conditions. The starching [...] Read more.
The investigation of influential parameters of the starching process on mechanical properties of yarns intended for multifunctional woven fabrics for thermal protective clothing was performed on four different yarn samples starched on an innovative starching machine, adapted to industrial starching conditions. The starching was conducted with two different processes with different starch mass concentrations: the standard starching process and a newer starching process (with yarn prewetting). Based on the results obtained, it can be concluded that starching positively affects all the properties of tested samples and that the increase of starch mass concentration is not accompanied by the improvement of those yarn properties. Synthetic polymer fibers that achieve satisfactory yarn strength need to be starched with lower starch mass concentrations in order to retain the breaking properties and to be protected from abrasion and static electricity, which occurs during the weaving process. The yarn prewetting starching process shows significantly better results than the standard starching process, especially for aramid yarns, where abrasion resistance increased from 42 to 135%. Therefore, we can conclude that the goal of starching such yarns is aimed at increasing the wear resistance. Linear regressions and correlations between the values of breaking properties and abrasion resistance obtained by the testing and their values that were estimated by the analysis show a high correlation coefficient. Full article
(This article belongs to the Special Issue Multifunctional Advanced Textile Materials)
Show Figures

Figure 1

14 pages, 5159 KiB  
Article
Effects of Micro-Braiding and Co-Wrapping Techniques on Characteristics of Flax/Polypropylene-Based Hybrid Yarn: A Comparative Study
by Wenqian Zhai, Peng Wang, Xavier Legrand, Damien Soulat and Manuela Ferreira
Polymers 2020, 12(11), 2559; https://doi.org/10.3390/polym12112559 - 31 Oct 2020
Cited by 13 | Viewed by 3171
Abstract
Micro-braiding and co-wrapping techniques have been developed over a few decades and have made important contributions to biocomposites development. In this present study, a set of flax/polypropylene (PP) micro-braided and co-wrapped yarns was developed by varying different PP parameters (PP braiding angles and [...] Read more.
Micro-braiding and co-wrapping techniques have been developed over a few decades and have made important contributions to biocomposites development. In this present study, a set of flax/polypropylene (PP) micro-braided and co-wrapped yarns was developed by varying different PP parameters (PP braiding angles and PP wrapping turns, respectively) to get different flax/PP mass ratios. The effects on textile and mechanical characteristics were studied thoroughly at the yarn scale, both dry- and thermo-state tensile tests were carried out, and tensile properties were compared before and after the braiding process to study the braidabilities. It was observed that PP braiding angles of micro-braided yarn influenced the frictional damage on surface treatment agent of flax roving, the cohesive effect between PP filaments/flax roving, and the PP cover factor; PP wrapping turns of co-wrapped yarn had a strong impact on the flax roving damage and the PP coverage, which further influenced the characteristics. Micro-braided yarn and co-wrapped yarn with the same flax/PP mass ratio were compared to evaluate the two different hybrid yarn production techniques; it was proven that micro-braided yarn presented better performance. Full article
(This article belongs to the Special Issue Advances in Braided Polymer Composites)
Show Figures

Graphical abstract

22 pages, 3070 KiB  
Article
Synthetized Potato Starch—A New Eco Sizing Agent for Cotton Yarns
by Stana Kovačević, Ivana Schwarz, Suzana Đorđević and Dragan Đorđević
Polymers 2019, 11(5), 908; https://doi.org/10.3390/polym11050908 - 20 May 2019
Cited by 14 | Viewed by 5772
Abstract
The objective of this research was to verify the feasibility of the use of newly synthesized biopolymer materials for sizing cotton yarns based on the basic principles of chemical modification. Research included acid hydrolysis of potato starch up to controlled molar masses together [...] Read more.
The objective of this research was to verify the feasibility of the use of newly synthesized biopolymer materials for sizing cotton yarns based on the basic principles of chemical modification. Research included acid hydrolysis of potato starch up to controlled molar masses together with graft-polymerization and methacrylic acid onto hydrolyzed starch to improve hydrophilicity and solubility, to increase the capability of film forming, to increase adhesive potential and to avoid retrogradation phenomena. Research objectives were primarily focused on finding an appropriate, environmentally-friendly and productive sizing agent for cotton yarns via the analysis and systematization of a large number of synthesis methods in conjunction with the characterization and properties of graft-copolymers. The research results showed that potassium persulfate initiator was most efficient in grafting of methacrylic acid onto hydrolyzed starch, while azobisisobutyronitrile (AIBIN) initiator was most efficient in grafting of acrylic acid (AC). FTIR analysis confirmed that new and efficient products for sizing cotton yarns from synthetized potato starch were obtained. Research on rheological properties of copolymers shows a higher viscosity of grafted products indicating the good stability of potential starches. Ecological improvements have been established through high desizing degree as well as improvements in physical-mechanical properties of yarn, abrasion resistance and decrease in yarn surface hairiness were noticed. The use of new derivatives of potato starch, especially of hydrolyzed starch grafted with methacrylic acid (MAA), potassium persulfate (KPS) as initiator, was confirmed. Anova statistical analysis determined the influence of the entire sizing process on individual yarn parameters. Full article
(This article belongs to the Special Issue Natural Compounds for Natural Polymers)
Show Figures

Figure 1

16 pages, 9728 KiB  
Article
Carded Tow Real-Time Color Assessment: A Spectral Camera-Based System
by Rocco Furferi, Lapo Governi, Yary Volpe and Monica Carfagni
Sensors 2016, 16(9), 1404; https://doi.org/10.3390/s16091404 - 31 Aug 2016
Viewed by 6331
Abstract
One of the most important parameters to be controlled during the production of textile yarns obtained by mixing pre-colored fibers, is the color correspondence between the manufactured yarn and a given reference, usually provided by a designer or a customer. Obtaining yarns from [...] Read more.
One of the most important parameters to be controlled during the production of textile yarns obtained by mixing pre-colored fibers, is the color correspondence between the manufactured yarn and a given reference, usually provided by a designer or a customer. Obtaining yarns from raw pre-colored fibers is a complex manufacturing process entailing a number of steps such as laboratory sampling, color recipe corrections, blowing, carding and spinning. Carding process is the one devoted to transform a “fuzzy mass” of tufted fibers into a regular mass of untwisted fibers, named “tow”. During this process, unfortunately, the correspondence between the color of the tow and the target one cannot be assured, thus leading to yarns whose color differs from the one used for reference. To solve this issue, the main aim of this work is to provide a system able to perform a spectral camera-based real-time measurement of a carded tow, to assess its color correspondence with a reference carded fabric and, at the same time, to monitor the overall quality of the tow during the carding process. Tested against a number of differently colored carded fabrics, the proposed system proved its effectiveness in reliably assessing color correspondence in real-time. Full article
(This article belongs to the Special Issue State-of-the-Art Sensors Technologies in Italy 2016)
Show Figures

Graphical abstract

Back to TopTop