Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = xyphoid process

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
8 pages, 1454 KiB  
Article
Application of Botulinum Neurotoxin Injections in TRAM Flap for Breast Reconstruction: Intramuscular Neural Arborization of the Rectus Abdominis Muscle
by Kyu-Ho Yi, Hyung-Jin Lee, Ji-Hyun Lee, Kyle K. Seo and Hee-Jin Kim
Toxins 2021, 13(4), 269; https://doi.org/10.3390/toxins13040269 - 9 Apr 2021
Cited by 21 | Viewed by 2745
Abstract
Breast reconstruction after mastectomy is commonly performed using transverse rectus abdominis myocutaneous (TRAM) flap. Previous studies have demonstrated that botulinum neurotoxin injections in TRAM flap surgeries lower the risk of necrosis and allow further expansion of arterial cross-sectional diameters. The study was designed [...] Read more.
Breast reconstruction after mastectomy is commonly performed using transverse rectus abdominis myocutaneous (TRAM) flap. Previous studies have demonstrated that botulinum neurotoxin injections in TRAM flap surgeries lower the risk of necrosis and allow further expansion of arterial cross-sectional diameters. The study was designed to determine the ideal injection points for botulinum neurotoxin injection by exploring the arborization patterns of the intramuscular nerves of the rectus abdominis muscle. A modified Sihler’s method was performed on 16 rectus abdominis muscle specimens. Arborization of the intramuscular nerves was determined based on the most prominent point of the xyphoid process to the pubic crest. All 16 rectus abdominis muscle specimens were divided into four muscle bellies by the tendinous portion. The arborized portions of the muscles were located on the 5–15%, 25–35%, 45–55%, and 70–80% sections of the 1st, 2nd, 3rd, and 4th muscle bellies, respectively. The tendinous portion was located at the 15–20%, 35–40%, 55–60%, and 90–100% sections. These results suggest that botulinum neurotoxin injections into the rectus abdominis muscles should be performed in specific sections. Full article
(This article belongs to the Special Issue Botulinum Toxins in Clinical Practice)
Show Figures

Figure 1

8 pages, 5137 KiB  
Article
Effect of BMP-2 Adherent to Resorbable Sutures on Cartilage Repair: A Rat Model of Xyphoid Process
by Nathan Drummond, Bradley W. Bruner, Michael H. Heggeness, Bradley Dart and Shang-You Yang
Materials 2020, 13(17), 3764; https://doi.org/10.3390/ma13173764 - 26 Aug 2020
Cited by 2 | Viewed by 2144
Abstract
Meniscal tears are often seen in orthopedic practice. The current strategy for meniscal repair has only had limited success with a relatively high incidence of re-operative rate. This study evaluates the therapeutic effects of Bone morphogenetic protein-2 (BMP-2) soaked sutures for cartilage repair, [...] Read more.
Meniscal tears are often seen in orthopedic practice. The current strategy for meniscal repair has only had limited success with a relatively high incidence of re-operative rate. This study evaluates the therapeutic effects of Bone morphogenetic protein-2 (BMP-2) soaked sutures for cartilage repair, using a rat model of xyphoid healing. Vicryl-resorbable sutures were presoaked in BMP-2 solutions prior to animal experimentation. Rat xyphoid process (an avascular hyaline cartilage structure) was surgically ruptured followed by repair procedures with regular suture or with sutures that were pre-soaked in BMP-2 solutions. In vitro assessment indicated that presoaking the Vicryl-resorbable sutures with 10 µg/mL BMP-2 resulted in a sustained amount of the growth factor release up to 7 days. Histological analysis suggested that application of this BMP-2 soaked suture on the rat xyphoid process model significantly improved the avascular cartilage healing compared to non-soaked control sutures. In conclusion, data here confirm that the rat xyphoid process repair is a reproducible and inexpensive animal model for meniscus and other cartilage repair. More importantly, coating of BMP-2 on sutures appears a potential avenue to improve cartilage repair and regeneration. Further study is warranted to explore the molecular mechanisms of this strategy. Full article
(This article belongs to the Special Issue Resorbable and Nonresorbable Materials for Medical Applications)
Show Figures

Figure 1

Back to TopTop