Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = woodceramics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 4455 KiB  
Article
Development of an Electrostatic Precipitator with Porous Carbon Electrodes to Collect Carbon Particles
by Yoshihiro Kawada and Hirotaka Shimizu
Energies 2019, 12(14), 2805; https://doi.org/10.3390/en12142805 - 21 Jul 2019
Cited by 4 | Viewed by 4201
Abstract
Exhaust gases from internal combustion engines contain fine carbon particles. If a biofuel is used as the engine fuel for low-carbon emission, the exhaust gas still contains numerous carbon particles. For example, the ceramic filters currently used in automobiles with diesel engines trap [...] Read more.
Exhaust gases from internal combustion engines contain fine carbon particles. If a biofuel is used as the engine fuel for low-carbon emission, the exhaust gas still contains numerous carbon particles. For example, the ceramic filters currently used in automobiles with diesel engines trap these carbon particles, which are then burned during the filter regeneration process, thus releasing additional CO2. Electrostatic precipitators are generally suitable to achieve low particle concentrations and large treatment quantities. However, low-resistivity particles, such as carbon particles, cause re-entrainment phenomena in electrostatic precipitators. In this study, we develop an electrostatic precipitator to collect fine carbon particles. Woodceramics were used for the grounded electrode in the precipitator to collect carbon particles on the carbon electrode. Woodceramics are eco-friendly materials, made from sawdust. The electrical resistivity and surface roughness of the woodceramics are varied by the firing temperature in the production process. Woodceramics electrodes feature higher resistivity and roughness as compared to stainless-steel electrodes. We evaluated the influence of woodceramics electrodes on the electric field formed by electrostatic precipitators and calculated the corresponding charge distribution. Furthermore, the particle-collection efficiency of the developed system was evaluated using an experimental apparatus. Full article
(This article belongs to the Special Issue Plasma Processes for Renewable Energy Technologies)
Show Figures

Figure 1

10 pages, 4463 KiB  
Article
Fabrication of α-Fe/Fe3C/Woodceramic Nanocomposite with Its Improved Microwave Absorption and Mechanical Properties
by Weihong Zhou, Yunshui Yu, Xueliang Xiong and Sicong Zhou
Materials 2018, 11(6), 878; https://doi.org/10.3390/ma11060878 - 24 May 2018
Cited by 24 | Viewed by 4457
Abstract
Furan resin and fir powder pretreated by FeCl3 and aqueous ammonia solution were used to fabricate α-Fe/Fe3C/woodceramic nanocomposite. The bands of the pretreated wood powder were characterized by Fourier transform infrared spectroscopy (FTIR). The structural characterization of the nanocomposites was [...] Read more.
Furan resin and fir powder pretreated by FeCl3 and aqueous ammonia solution were used to fabricate α-Fe/Fe3C/woodceramic nanocomposite. The bands of the pretreated wood powder were characterized by Fourier transform infrared spectroscopy (FTIR). The structural characterization of the nanocomposites was performed by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The microwave absorption of the nanocomposites was measured by a vector network analyzer in the range of 2–18 GHz. The mechanical properties of the composites were also investigated. XRD and SEM results show that the α-Fe and Fe3C nanoparticles are in-situ generated and disperse in the matrix of the woodceramic. The diameters of these nanoparticles increase with the increasing of concentration of FeCl3 solution. The experimental results show that both the complex permittivity and the complex permeability of α-Fe/Fe3C/woodceramic nanocomposites increase as the concentration of FeCl3 solution increases. The composites pretreated with 0.60 mol·L−1 FeCl3 have the best absorption properties. The maximum value of reflection loss (RL) at 3 mm thickness reaches −25.60 dB at 10.16 GHz and the bandwidth below −10 dB is about 2.5 GHz. Compared to woodceramic, the bending strength and compressive strength of α-Fe/Fe3C/woodceramic nanocomposites increase by 22.5% and 18.7% at most, respectively. Full article
(This article belongs to the Collection Advanced Biomass-Derived Carbon Materials)
Show Figures

Figure 1

8 pages, 2224 KiB  
Article
Effects of Carbonization Temperature and Component Ratio on Electromagnetic Interference Shielding Effectiveness of Woodceramics
by Yubo Tao, Peng Li and Sheldon Q. Shi
Materials 2016, 9(7), 540; https://doi.org/10.3390/ma9070540 - 2 Jul 2016
Cited by 31 | Viewed by 5781
Abstract
Woodceramics were fabricated in a vacuum through carbonization of wood powder impregnated with phenol formaldehyde (PF) resin. The effects of carbonization temperature and mass ratio of wood/resin on electromagnetic interference (EMI) shielding effectiveness (SE) and morphology of woodceramics were explored. The PF resin [...] Read more.
Woodceramics were fabricated in a vacuum through carbonization of wood powder impregnated with phenol formaldehyde (PF) resin. The effects of carbonization temperature and mass ratio of wood/resin on electromagnetic interference (EMI) shielding effectiveness (SE) and morphology of woodceramics were explored. The PF resin made wood cell walls have the characteristics of glassy carbon. Wood axial tracheid and ray cells were filled with more glassy carbon by increasing addition of PF resin. Moreover, the increase of carbonization temperature was beneficial to improving SE. Woodceramics (mass ratio 1:1) obtained at 1000 °C presented a medium SE level between 30 MHz and 1.5 GHz. Full article
Show Figures

Figure 1

Back to TopTop