Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = wood-PLA/PHA

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4938 KiB  
Article
Parametric Design and Mechanical Characterization of 3D-Printed PLA Composite Biomimetic Voronoi Lattices Inspired by the Stereom of Sea Urchins
by Alexandros Efstathiadis, Ioanna Symeonidou, Konstantinos Tsongas, Emmanouil K. Tzimtzimis and Dimitrios Tzetzis
J. Compos. Sci. 2023, 7(1), 3; https://doi.org/10.3390/jcs7010003 - 26 Dec 2022
Cited by 17 | Viewed by 3822
Abstract
The present work is focused on the analysis of the microstructure of the exoskeleton of the sea urchin Paracentrotus lividus and the extraction of design concepts by implementing geometrically described 3D Voronoi diagrams. Scanning electron microscopy (SEM) analysis of dried sea urchin shells [...] Read more.
The present work is focused on the analysis of the microstructure of the exoskeleton of the sea urchin Paracentrotus lividus and the extraction of design concepts by implementing geometrically described 3D Voronoi diagrams. Scanning electron microscopy (SEM) analysis of dried sea urchin shells revealed a foam-like microstructure, also known as the stereom. Subsequently, parametric, digital models were created with the aid of the computer-aided design (CAD) software Rhinoceros 3D (v. Rhino 7, 7.1.20343.09491) combined with the visual programming environment Grasshopper. Variables such as node count, rod thickness and mesh smoothness of the biologically-inspired Voronoi lattice were adapted for 3D printing cubic specimens using the fused filament fabrication (FFF) method. The filaments used in the process were a commercial polylactic acid (PLA), a compound of polylactic acid/polyhydroxyalkanoate (PLA/PHA) and a wood fiber polylactic acid/polyhydroxyalkanoate (PLA/PHA) composite. Nanoindentation tests coupled with finite element analysis (FEA) produced the stress–strain response of the materials under study and were used to simulate the Voronoi geometries under a compression loading regime in order to study their deformation and stress distribution in relation to experimental compression testing. The PLA blend with polyhydroxyalkanoate seems to have a minor effect on the mechanical behavior of such structures, whereas when wood fibers are added to the compound, a major decrease in strength occurs. The computational model results significantly coincide with the experimental results. Full article
(This article belongs to the Special Issue 3D Printing Composites)
Show Figures

Figure 1

37 pages, 3662 KiB  
Review
An Overview on Wood Waste Valorization as Biopolymers and Biocomposites: Definition, Classification, Production, Properties and Applications
by Francesca Ferrari, Raffaella Striani, Daniela Fico, Mohammad Mahbubul Alam, Antonio Greco and Carola Esposito Corcione
Polymers 2022, 14(24), 5519; https://doi.org/10.3390/polym14245519 - 16 Dec 2022
Cited by 37 | Viewed by 10234
Abstract
Bio-based polymers, obtained from natural biomass, are nowadays considered good candidates for the replacement of traditional fossil-derived plastics. The need for substituting traditional synthetic plastics is mainly driven by many concerns about their detrimental effects on the environment and human health. The most [...] Read more.
Bio-based polymers, obtained from natural biomass, are nowadays considered good candidates for the replacement of traditional fossil-derived plastics. The need for substituting traditional synthetic plastics is mainly driven by many concerns about their detrimental effects on the environment and human health. The most innovative way to produce bioplastics involves the use of raw materials derived from wastes. Raw materials are of vital importance for human and animal health and due to their economic and environmental benefits. Among these, wood waste is gaining popularity as an innovative raw material for biopolymer manufacturing. On the other hand, the use of wastes as a source to produce biopolymers and biocomposites is still under development and the processing methods are currently being studied in order to reach a high reproducibility and thus increase the yield of production. This study therefore aimed to cover the current developments in the classification, manufacturing, performances and fields of application of bio-based polymers, especially focusing on wood waste sources. The work was carried out using both a descriptive and an analytical methodology: first, a description of the state of art as it exists at present was reported, then the available information was analyzed to make a critical evaluation of the results. A second way to employ wood scraps involves their use as bio-reinforcements for composites; therefore, the increase in the mechanical response obtained by the addition of wood waste in different bio-based matrices was explored in this work. Results showed an increase in Young’s modulus up to 9 GPa for wood-reinforced PLA and up to 6 GPa for wood-reinforced PHA. Full article
Show Figures

Figure 1

17 pages, 4293 KiB  
Article
Influence of Internal Innovative Architecture on the Mechanical Properties of 3D Polymer Printed Parts
by Mihai Alin Pop, Cătălin Croitoru, Tibor Bedo, Virgil Geamăn, Irinel Radomir, Sebastian Marian Zaharia and Lucia Antoaneta Chicoș
Polymers 2020, 12(5), 1129; https://doi.org/10.3390/polym12051129 - 14 May 2020
Cited by 17 | Viewed by 3753
Abstract
The utilization of polymer-based materials is quickly expanding. The enterprises of today are progressively seeking techniques to supplant metal parts with polymer-based materials as a result of their light weight, simple support and modest costs. The ceaselessly developing requirement for composite materials with [...] Read more.
The utilization of polymer-based materials is quickly expanding. The enterprises of today are progressively seeking techniques to supplant metal parts with polymer-based materials as a result of their light weight, simple support and modest costs. The ceaselessly developing requirement for composite materials with new or enhanced properties brings about the preparation of different polymer mixes with various arrangements, morphologies and properties. Fused filament fabrication processes such as 3D-printing are nowadays shaping the actual pathway to a full pallet of materials, from art–craft to biomaterials. In this study, the structural and mechanical behavior of three types of commercially available filaments comprised of synthetic poly(acrylonitrile-co-butadiene-co-styrene) (ABS), poly(lactic acid) (PLA) and poly(lactic acid)/polyhydroxyalkanoate reinforced with bamboo wood flour composite (PLA/PHA BambooFill) were assessed through mechanical testing and optical microscopy, aiming to understand how the modifications that occur in the printed models with internal architecture are influencing the mechanical properties of the 3D-printed material. It has been determined that the material printed from PLA presents the highest compression strength, three-point bending and shock resistance, while the ABS shows the best tensile strength performance. A probability plot was used to verify the normality hypothesis of data for the tensile strength, in conjunction with the Anderson–Darling statistic test. The results of the statistic indicated that the data were normally distributed and that there is a marked influence of the internal architecture of the 3D-printed models on the mechanical properties of the printed material. Full article
(This article belongs to the Special Issue Advances in Composite Polymers for 3D Printing)
Show Figures

Figure 1

17 pages, 9053 KiB  
Article
Microstructure and Mechanical Performance of 3D Printed Wood-PLA/PHA Using Fused Deposition Modelling: Effect of Printing Temperature
by Sofiane Guessasma, Sofiane Belhabib and Hedi Nouri
Polymers 2019, 11(11), 1778; https://doi.org/10.3390/polym11111778 - 29 Oct 2019
Cited by 75 | Viewed by 8590
Abstract
The microstructure and mechanical performance of wood-based filament is investigated in the case of Fused Deposition Modelling (FDM) technique using experimental and numerical approaches. The printing process of wood-PLA/PHA is conducted by varying the printing temperature, typically from 210 °C to 250 °C. [...] Read more.
The microstructure and mechanical performance of wood-based filament is investigated in the case of Fused Deposition Modelling (FDM) technique using experimental and numerical approaches. The printing process of wood-PLA/PHA is conducted by varying the printing temperature, typically from 210 °C to 250 °C. The filament temperature during the laying down is measured using infra-red camera to study the thermal cycling. In addition, X-ray micro-tomography is used to evaluate the material arrangement of printed wood-PLA/PHA at different length scales. Tensile experiments are performed to rank the loss in mechanical performance with respect to the filament properties. Finally, finite element computation is considered to predict the tensile behaviour based on the implementation of the real 3D microstructure issued from X-ray micro-tomography. The results show that the wood-based filament is printable over a wide range of temperatures and exhibits a marked heat accumulation tendency at high printing temperatures. However, the limited gain in tensile performance at these temperatures makes 220 °C an optimal choice for printing wood-based filament. The elongation at break of 3D-printed wood-PLA/PHA is remarkably similar to the results observed for the filament. Finite element computation reveals that despite this apparent similarity, the associated deformation mechanisms are different. Full article
(This article belongs to the Special Issue 3D and 4D Printing of (Bio)Materials)
Show Figures

Graphical abstract

Back to TopTop