Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = weighted SVDD

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 4004 KB  
Article
Graph-Attention-Regularized Deep Support Vector Data Description for Semi-Supervised Anomaly Detection: A Case Study in Automotive Quality Control
by Taha J. Alhindi
Mathematics 2025, 13(23), 3876; https://doi.org/10.3390/math13233876 - 3 Dec 2025
Viewed by 299
Abstract
This paper addresses semi-supervised anomaly detection in settings where only a small subset of normal data can be labeled. Such conditions arise, for example, in industrial quality control of windshield wiper noise, where expert labeling is costly and limited. Our objective is to [...] Read more.
This paper addresses semi-supervised anomaly detection in settings where only a small subset of normal data can be labeled. Such conditions arise, for example, in industrial quality control of windshield wiper noise, where expert labeling is costly and limited. Our objective is to learn a one-class decision boundary that leverages the geometry of unlabeled data while remaining robust to contamination and scarcity of labeled normals. We propose a graph-attention-regularized deep support vector data description (GAR-DSVDD) model that combines a deep one-class enclosure with a latent k-nearest-neighbor graph whose edges are weighted by similarity- and score-aware attention. The resulting loss integrates (i) a distance-based enclosure on labeled normals, (ii) a graph smoothness term on squared distances over the attention-weighted graph, and (iii) a center-pull regularizer on unlabeled samples to avoid over-smoothing and boundary drift. Experiments on a controlled simulated dataset and an industrial windshield wiper acoustics dataset show that GAR-DSVDD consistently improves the F1 score under scarce label conditions. On average, F1 increases from 0.78 to 0.84 on the simulated benchmark and from 0.63 to 0.86 on the industrial case study relative to the best competing baseline. Full article
(This article belongs to the Special Issue Data Mining and Machine Learning with Applications, 2nd Edition)
Show Figures

Figure 1

13 pages, 1536 KB  
Article
Open-Set Recognition of Wood Species Based on Deep Learning Feature Extraction Using Leaves
by Tianyu Fang, Zhenyu Li, Jialin Zhang, Dawei Qi and Lei Zhang
J. Imaging 2023, 9(8), 154; https://doi.org/10.3390/jimaging9080154 - 30 Jul 2023
Cited by 1 | Viewed by 2916
Abstract
An open-set recognition scheme for tree leaves based on deep learning feature extraction is presented in this study. Deep learning algorithms are used to extract leaf features for different wood species, and the leaf set of a wood species is divided into two [...] Read more.
An open-set recognition scheme for tree leaves based on deep learning feature extraction is presented in this study. Deep learning algorithms are used to extract leaf features for different wood species, and the leaf set of a wood species is divided into two datasets: the leaf set of a known wood species and the leaf set of an unknown species. The deep learning network (CNN) is trained on the leaves of selected known wood species, and the features of the remaining known wood species and all unknown wood species are extracted using the trained CNN. Then, the single-class classification is performed using the weighted SVDD algorithm to recognize the leaves of known and unknown wood species. The features of leaves recognized as known wood species are fed back to the trained CNN to recognize the leaves of known wood species. The recognition results of a single-class classifier for known and unknown wood species are combined with the recognition results of a multi-class CNN to finally complete the open recognition of wood species. We tested the proposed method on the publicly available Swedish Leaf Dataset, which includes 15 wood species (5 species used as known and 10 species used as unknown). The test results showed that, with F1 scores of 0.7797 and 0.8644, mixed recognition rates of 95.15% and 93.14%, and Kappa coefficients of 0.7674 and 0.8644 under two different data distributions, the proposed method outperformed the state-of-the-art open-set recognition algorithms in all three aspects. And, the more wood species that are known, the better the recognition. This approach can extract effective features from tree leaf images for open-set recognition and achieve wood species recognition without compromising tree material. Full article
(This article belongs to the Topic Applications in Image Analysis and Pattern Recognition)
Show Figures

Figure 1

16 pages, 1086 KB  
Article
Anomaly Detection Algorithm Based on Broad Learning System and Support Vector Domain Description
by Qun Huang, Zehua Zheng, Wenhao Zhu, Xiaozhao Fang, Ribo Fang and Weijun Sun
Mathematics 2022, 10(18), 3292; https://doi.org/10.3390/math10183292 - 10 Sep 2022
Cited by 2 | Viewed by 2827
Abstract
Deep neural network-based autoencoders can effectively extract high-level abstract features with outstanding generalization performance but suffer from sparsity of extracted features, insufficient robustness, greedy training of each layer, and a lack of global optimization. In this study, the broad learning system (BLS) is [...] Read more.
Deep neural network-based autoencoders can effectively extract high-level abstract features with outstanding generalization performance but suffer from sparsity of extracted features, insufficient robustness, greedy training of each layer, and a lack of global optimization. In this study, the broad learning system (BLS) is improved to obtain a new model for data reconstruction. Support Vector Domain Description (SVDD) is one of the best-known one-class-classification methods used to solve problems where the proportion of sample categories of data is extremely unbalanced. The SVDD is sensitive to penalty parameters C, which represents the trade-off between sphere volume and the number of target data outside the sphere. The training process only considers normal samples, which leads to a low recall rate and weak generalization performance. To address these issues, we propose a BLS-based weighted SVDD algorithm (BLSW_SVDD), which introduces reconstruction error weights and a small number of anomalous samples when training the SVDD model, thus improving the robustness of the model. To evaluate the performance of BLSW_SVDD model, comparison experiments were conducted on the UCI dataset, and the experimental results showed that in terms of accuracy and F1 values, the algorithm has better performance advantages than the traditional and improved SVDD algorithms. Full article
(This article belongs to the Special Issue Deep Learning and Adaptive Control)
Show Figures

Figure 1

24 pages, 7292 KB  
Article
A Novel Hybrid Method for KPI Anomaly Detection Based on VAE and SVDD
by Yun Zhao, Xiuguo Zhang, Zijing Shang and Zhiying Cao
Symmetry 2021, 13(11), 2104; https://doi.org/10.3390/sym13112104 - 5 Nov 2021
Cited by 8 | Viewed by 4239
Abstract
Key performance indicator (KPI) anomaly detection is the underlying core technology in Artificial Intelligence for IT operations (AIOps). It has an important impact on subsequent anomaly location and root cause analysis. Variational auto-encoder (VAE) is a symmetry network structure composed of encoder and [...] Read more.
Key performance indicator (KPI) anomaly detection is the underlying core technology in Artificial Intelligence for IT operations (AIOps). It has an important impact on subsequent anomaly location and root cause analysis. Variational auto-encoder (VAE) is a symmetry network structure composed of encoder and decoder, which has attracted extensive attention because of its ability to capture complex KPI data features and better detection results. However, VAE is not well applied to the modeling of KPI time series data and it is often necessary to set the threshold to obtain more accurate results. In response to these problems, this paper proposes a novel hybrid method for KPI anomaly detection based on VAE and support vector data description (SVDD). This method consists of two modules: a VAE reconstructor and SVDD anomaly detector. In the VAE reconstruction module, firstly, bi-directional long short-term memory (BiLSTM) is used to replace the traditional feedforward neural network in VAE to capture the time correlation of sequences; then, batch normalization is used at the output of the encoder to prevent the disappearance of KL (Kullback–Leibler) divergence, which prevents ignoring latent variables to reconstruct data directly. Finally, exponentially weighted moving average (EWMA) is used to smooth the reconstruction error, which reduces false positives and false negatives during the detection process. In the SVDD anomaly detection module, smoothed reconstruction errors are introduced into the SVDD for training to determine the threshold of adaptively anomaly detection. Experimental results on the public dataset show that this method has a better detection effect than baseline methods. Full article
(This article belongs to the Special Issue Computational Intelligence and Soft Computing: Recent Applications)
Show Figures

Figure 1

19 pages, 557 KB  
Article
Nonlinear Chemical Process Fault Diagnosis Using Ensemble Deep Support Vector Data Description
by Xiaogang Deng and Zheng Zhang
Sensors 2020, 20(16), 4599; https://doi.org/10.3390/s20164599 - 16 Aug 2020
Cited by 17 | Viewed by 3576
Abstract
As one classical anomaly detection technology, support vector data description (SVDD) has been successfully applied to nonlinear chemical process monitoring. However, the basic SVDD model cannot achieve a satisfactory fault detection performance in the complicated cases because of its intrinsic shallow learning structure. [...] Read more.
As one classical anomaly detection technology, support vector data description (SVDD) has been successfully applied to nonlinear chemical process monitoring. However, the basic SVDD model cannot achieve a satisfactory fault detection performance in the complicated cases because of its intrinsic shallow learning structure. Motivated by the deep learning theory, one improved SVDD method, called ensemble deep SVDD (EDeSVDD), is proposed in order to monitor the process faults more effectively. In the proposed method, a deep support vector data description (DeSVDD) framework is firstly constructed by introducing the deep feature extraction procedure. Different to the traditional SVDD with only one feature extraction layer, DeSVDD is designed with multi-layer feature extraction structure and optimized by minimizing the data-enclosing hypersphere with the regularization of the deep network weights. Further considering the problem that DeSVDD monitoring performance is easily affected by the model structure and the initial weight parameters, an ensemble DeSVDD (EDeSVDD) is presented by applying the ensemble learning strategy based on Bayesian inference. A series of DeSVDD sub-models are generated at the parameter level and the structure level, respectively. These two levels of sub-models are integrated for a holistic monitoring model. To identify the cause variables for the detected faults, a fault isolation scheme is designed by applying the distance correlation coefficients to measure the nonlinear dependency between the original variables and the holistic monitoring index. The applications to the Tennessee Eastman process demonstrate that the proposed EDeSVDD model outperforms the traditional SVDD model and the DeSVDD model in terms of fault detection performance and can identify the fault cause variables effectively. Full article
(This article belongs to the Special Issue Cyberphysical Sensing Systems for Fault Detection and Identification)
Show Figures

Figure 1

19 pages, 2318 KB  
Article
A New Method of Fuzzy Support Vector Machine Algorithm for Intrusion Detection
by Wei Liu, LinLin Ci and LiPing Liu
Appl. Sci. 2020, 10(3), 1065; https://doi.org/10.3390/app10031065 - 5 Feb 2020
Cited by 27 | Viewed by 5911
Abstract
Since SVM is sensitive to noises and outliers of system call sequence data. A new fuzzy support vector machine algorithm based on SVDD is presented in this paper. In our algorithm, the noises and outliers are identified by a hypersphere with minimum volume [...] Read more.
Since SVM is sensitive to noises and outliers of system call sequence data. A new fuzzy support vector machine algorithm based on SVDD is presented in this paper. In our algorithm, the noises and outliers are identified by a hypersphere with minimum volume while containing the maximum of the samples. The definition of fuzzy membership is considered by not only the relation between a sample and hyperplane, but also relation between samples. For each sample inside the hypersphere, the fuzzy membership function is a linear function of the distance between the sample and the hyperplane. The greater the distance, the greater the weight coefficient. For each sample outside the hypersphere, the membership function is an exponential function of the distance between the sample and the hyperplane. The greater the distance, the smaller the weight coefficient. Compared with the traditional fuzzy membership definition based on the relation between a sample and its cluster center, our method effectively distinguishes the noises or outlies from support vectors and assigns them appropriate weight coefficients even though they are distributed on the boundary between the positive and the negative classes. The experiments show that the fuzzy support vector proposed in this paper is more robust than the support vector machine and fuzzy support vector machines based on the distance of a sample and its cluster center. Full article
Show Figures

Figure 1

13 pages, 1997 KB  
Article
Outlier Detection Using Improved Support Vector Data Description in Wireless Sensor Networks
by Pei Shi, Guanghui Li, Yongming Yuan and Liang Kuang
Sensors 2019, 19(21), 4712; https://doi.org/10.3390/s19214712 - 30 Oct 2019
Cited by 7 | Viewed by 4153
Abstract
Wireless sensor networks (WSNs) are susceptible to faults in sensor data. Outlier detection is crucial for ensuring the quality of data analysis in WSNs. This paper proposes a novel improved support vector data description method (ID-SVDD) to effectively detect outliers of sensor data. [...] Read more.
Wireless sensor networks (WSNs) are susceptible to faults in sensor data. Outlier detection is crucial for ensuring the quality of data analysis in WSNs. This paper proposes a novel improved support vector data description method (ID-SVDD) to effectively detect outliers of sensor data. ID-SVDD utilizes the density distribution of data to compensate SVDD. The Parzen-window algorithm is applied to calculate the relative density for each data point in a data set. Meanwhile, we use Mahalanobis distance (MD) to improve the Gaussian function in Parzen-window density estimation. Through combining new relative density weight with SVDD, this approach can efficiently map the data points from sparse space to high-density space. In order to assess the outlier detection performance, the ID-SVDD algorithm was implemented on several datasets. The experimental results demonstrated that ID-SVDD achieved high performance, and could be applied in real water quality monitoring. Full article
(This article belongs to the Collection Fog/Edge Computing based Smart Sensing System)
Show Figures

Figure 1

25 pages, 7629 KB  
Article
Weak Fault Feature Extraction and Enhancement of Wind Turbine Bearing Based on OCYCBD and SVDD
by Xiaolong Wang, Xiaoli Yan and Yuling He
Appl. Sci. 2019, 9(18), 3706; https://doi.org/10.3390/app9183706 - 6 Sep 2019
Cited by 19 | Viewed by 3116
Abstract
The fault feature of wind turbine bearing is usually very weak in the early injury stage, in order to accurately identify the defect location, an original approach based on optimized cyclostationary blind deconvolution (OCYCBD) and singular value decomposition denoising (SVDD) is put forward [...] Read more.
The fault feature of wind turbine bearing is usually very weak in the early injury stage, in order to accurately identify the defect location, an original approach based on optimized cyclostationary blind deconvolution (OCYCBD) and singular value decomposition denoising (SVDD) is put forward to extract and enhance the fault feature effectively. In this diagnosis method, the fast spectral coherence is fused with the equal step size search strategy for the cyclic frequency parameter and the filter length parameter optimization, and a new frequency weighted energy entropy (FWEE) indicator which combining the advantages of the frequency weighted energy operator (FWEO) and the Shannon entropy, is developed for deconvolution signal evaluation during parameter optimization process. In addition, a novel singular value order determination approach based on fitting error minimum principle is utilized by SVDD to enhance the fault feature. During the process of defect identification, OCYCBD with the optimal parameters is firstly used to recover the informative source from the collected vibration signal. FWEO is further utilized to highlight the potential impulsive characteristics, and the instantaneous energy signal of deconvolution result can be acquired. The whole interferences contained in the instantaneous energy signal can’t be removed due to the weak fault signature and the severe background noise. Then, SVDD is applied to purify the instantaneous energy signal of deconvolution signal, by which the residual interference component is eliminated and the fault feature is strengthened immensely. Finally, frequency domain analysis is performed on the denoised instantaneous energy signal, and the defect location identification of wind turbine bearing can be achieved through analyzing the obvious spectral lines in the obtained enhanced energy spectrum. The collected signals from the experimental platform and the engineering field are both utilized to verify the feasibility of proposed method, and its superiority is further demonstrated through comparing with several well known diagnosis methods. The results indicate this novel method has distinct advantage on bearing weak feature extraction and enhancement. Full article
(This article belongs to the Special Issue Machine Fault Diagnostics and Prognostics)
Show Figures

Figure 1

Back to TopTop